Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Natl Cancer Inst ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710487

ABSTRACT

BACKGROUND: Camonsertib is a selective oral inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase with demonstrated efficacy in tumors with DNA damage response gene deficiencies. On-target anemia is the main drug-related toxicity typically manifesting after the period of dose-limiting toxicity evaluation. Thus dose/schedule optimization requires extended follow-up to assess prolonged treatment effects. METHODS: Long-term safety/tolerability and antitumor efficacy of three camonsertib monotherapy dose levels/schedules were assessed in the TRESR study dose-optimization phase: 160 mg once daily (QD) 3 days on/4 off (160 3/4; the preliminary recommended phase II dose [RP2D]) and two step-down groups of 120 mg QD 3/4 (120 3/4) and 160 mg QD 3/4, 2 weeks on/1 off (160 3/4, 2/1w). Safety endpoints included incidence of treatment-related adverse events (TRAEs), dose modifications, and transfusions. Efficacy endpoints included overall response rate, clinical benefit rate, progression-free survival, and circulating-tumor-DNA (ctDNA)-based molecular response rate. RESULTS: The analysis included 119 patients: 160 3/4 (n = 67), 120 3/4 (n = 25), and 160 3/4, 2/1w (n = 27) treated up to 117.1 weeks as of the data cutoff. The risk of developing grade 3 anemia was significantly lower in the 160 3/4, 2/1w group compared with the preliminary RP2D group (HR = 0.23, 2-sided P = .02), translating to reduced transfusion and dose reduction requirements. The intermittent weekly schedule did not compromise antitumor activity. CONCLUSION: The 160 3/4, 2/1w dose was established as an optimized regimen for future camonsertib monotherapy studies offering significantly reduced anemia incidence without any compromise to efficacy.

2.
NPJ Precis Oncol ; 8(1): 82, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561473

ABSTRACT

Pancreatic acinar cell carcinoma (PACC) is a rare form of pancreatic cancer that commonly harbors targetable alterations, including activating fusions in the MAPK pathway and loss-of-function (LOF) alterations in DNA damage response/homologous recombination DNA repair-related genes. Here, we describe a patient with PACC harboring both somatic biallelic LOF of NBN and an activating NTRK1 fusion. Upon disease progression following 13 months of treatment with folinic acid, fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX), genomic analysis of a metastatic liver biopsy revealed the emergence of a novel reversion mutation restoring the reading frame of NBN. To our knowledge, genomic reversion of NBN has not been previously reported as a resistance mechanism in any tumor type. The patient was treated with, but did not respond to, targeted treatment with a selective NTRK inhibitor. This case highlights the complex but highly actionable genomic landscape of PACC and underlines the value of genomic profiling of rare tumor types such as PACC.

3.
Clin Cancer Res ; 30(4): 687-694, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38078898

ABSTRACT

PURPOSE: Camonsertib is a highly selective and potent inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase. Dose-dependent anemia is a class-related on-target adverse event often requiring dose modifications. Individual patient risk factors for the development of significant anemia complicate the selection of a "one-size-fits-all" ATR inhibitor (ATRi) dose and schedule, possibly leading to suboptimal therapeutic doses in patients at low risk of anemia. We evaluated whether early predictors of anemia could be identified to ultimately inform a personalized dose-modification approach. PATIENTS AND METHODS: On the basis of preclinical observations and a mechanistic understanding of ATRi-related anemia, we identified several potential factors to explore in a multivariable linear regression modeling tool for predicting hemoglobin level ahead of day 22 (cycle 2) of treatment. RESULTS: In patients treated with camonsertib monotherapy (NCT04497116), we observed that hemoglobin decline is consistently preceded by reticulocytopenia, and dose- and exposure-dependent decreases in monocytes. We developed a nomogram incorporating baseline and day 8 hemoglobin and reticulocyte values that predicted the day 22 hemoglobin values of patients with clinically valuable concordance (within 7.5% of observations) 80% of the time in a cross-validation performance test of data from 60 patients. CONCLUSIONS: The prediction of future hemoglobin decrease, after a week of treatment, may enable a personalized, early dose modification to prevent development of clinically significant anemia and resulting unscheduled dose holds or transfusions.


Subject(s)
Anemia , Ataxia Telangiectasia , Humans , Ataxia Telangiectasia Mutated Proteins , Nomograms , Anemia/drug therapy , Anemia/etiology , Hemoglobins
4.
Nat Med ; 29(6): 1400-1411, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37277454

ABSTRACT

Predictive biomarkers of response are essential to effectively guide targeted cancer treatment. Ataxia telangiectasia and Rad3-related kinase inhibitors (ATRi) have been shown to be synthetic lethal with loss of function (LOF) of ataxia telangiectasia-mutated (ATM) kinase, and preclinical studies have identified ATRi-sensitizing alterations in other DNA damage response (DDR) genes. Here we report the results from module 1 of an ongoing phase 1 trial of the ATRi camonsertib (RP-3500) in 120 patients with advanced solid tumors harboring LOF alterations in DDR genes, predicted by chemogenomic CRISPR screens to sensitize tumors to ATRi. Primary objectives were to determine safety and propose a recommended phase 2 dose (RP2D). Secondary objectives were to assess preliminary anti-tumor activity, to characterize camonsertib pharmacokinetics and relationship with pharmacodynamic biomarkers and to evaluate methods for detecting ATRi-sensitizing biomarkers. Camonsertib was well tolerated; anemia was the most common drug-related toxicity (32% grade 3). Preliminary RP2D was 160 mg weekly on days 1-3. Overall clinical response, clinical benefit and molecular response rates across tumor and molecular subtypes in patients who received biologically effective doses of camonsertib (>100 mg d-1) were 13% (13/99), 43% (43/99) and 43% (27/63), respectively. Clinical benefit was highest in ovarian cancer, in tumors with biallelic LOF alterations and in patients with molecular responses. ClinicalTrials.gov registration: NCT04497116 .


Subject(s)
Ataxia Telangiectasia , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Protein Kinase Inhibitors/pharmacokinetics , DNA Damage , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
5.
EMBO Mol Med ; 14(7): e15203, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35514210

ABSTRACT

The mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) catalyzes one of the rate-limiting steps in de novo pyrimidine biosynthesis, a pathway that provides essential metabolic precursors for nucleic acids, glycoproteins, and phospholipids. DHODH inhibitors (DHODHi) are clinically used for autoimmune diseases and are emerging as a novel class of anticancer agents, especially in acute myeloid leukemia (AML) where pyrimidine starvation was recently shown to reverse the characteristic differentiation block in AML cells. Herein, we show that DHODH blockade rapidly shuts down protein translation in leukemic stem cells (LSCs) and has potent and selective activity against multiple AML subtypes. Moreover, we find that ablation of CDK5, a gene that is recurrently deleted in AML and related disorders, increases the sensitivity of AML cells to DHODHi. Our studies provide important molecular insights and identify a potential biomarker for an emerging strategy to target AML.


Subject(s)
Leukemia, Myeloid, Acute , Oxidoreductases Acting on CH-CH Group Donors , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/pharmacology , Humans , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Protein Biosynthesis , Pyrimidines/pharmacology
6.
Mol Cancer Ther ; 19(12): 2502-2515, 2020 12.
Article in English | MEDLINE | ID: mdl-33082276

ABSTRACT

Agents targeting metabolic pathways form the backbone of standard oncology treatments, though a better understanding of differential metabolic dependencies could instruct more rationale-based therapeutic approaches. We performed a chemical biology screen that revealed a strong enrichment in sensitivity to a novel dihydroorotate dehydrogenase (DHODH) inhibitor, AG-636, in cancer cell lines of hematologic versus solid tumor origin. Differential AG-636 activity translated to the in vivo setting, with complete tumor regression observed in a lymphoma model. Dissection of the relationship between uridine availability and response to AG-636 revealed a divergent ability of lymphoma and solid tumor cell lines to survive and grow in the setting of depleted extracellular uridine and DHODH inhibition. Metabolic characterization paired with unbiased functional genomic and proteomic screens pointed to adaptive mechanisms to cope with nucleotide stress as contributing to response to AG-636. These findings support targeting of DHODH in lymphoma and other hematologic malignancies and suggest combination strategies aimed at interfering with DNA-damage response pathways.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hematologic Neoplasms/metabolism , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pyrimidines/metabolism , Cell Line, Tumor , Cell Survival/drug effects , DNA Damage/drug effects , Dihydroorotate Dehydrogenase , Genomics/methods , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/etiology , Hematologic Neoplasms/pathology , Humans , Neoplasm Staging , Proteomics/methods
7.
Cell Rep ; 17(3): 876-890, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27732861

ABSTRACT

Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA) cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization, via the malate-aspartate shuttle, as a predictor of whether OGDH is required for proliferation in 3D culture assays and for the growth of xenograft tumors. These findings highlight an anaplerotic role of aspartate and, more broadly, suggest that differential nutrient utilization patterns can identify subsets of cancers with distinct metabolic dependencies for potential pharmacological intervention.


Subject(s)
Aspartic Acid/metabolism , Ketoglutarate Dehydrogenase Complex/metabolism , Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Respiration/drug effects , Citric Acid Cycle/drug effects , Enzyme Inhibitors/pharmacology , Gene Knockdown Techniques , Humans , RNA, Small Interfering/metabolism
8.
PLoS One ; 9(12): e115144, 2014.
Article in English | MEDLINE | ID: mdl-25502225

ABSTRACT

Recent work has highlighted glutaminase (GLS) as a key player in cancer cell metabolism, providing glutamine-derived carbon and nitrogen to pathways that support proliferation. There is significant interest in targeting GLS for cancer therapy, although the gene is not known to be mutated or amplified in tumors. As a result, identification of tractable markers that predict GLS dependence is needed for translation of GLS inhibitors to the clinic. Herein we validate a small molecule inhibitor of GLS and show that non-small cell lung cancer cells marked by low E-cadherin and high vimentin expression, hallmarks of a mesenchymal phenotype, are particularly sensitive to inhibition of the enzyme. Furthermore, lung cancer cells induced to undergo epithelial to mesenchymal transition (EMT) acquire sensitivity to the GLS inhibitor. Metabolic studies suggest that the mesenchymal cells have a reduced capacity for oxidative phosphorylation and increased susceptibility to oxidative stress, rendering them unable to cope with the perturbations induced by GLS inhibition. These findings elucidate selective metabolic dependencies of mesenchymal lung cancer cells and suggest novel pathways as potential targets in this aggressive cancer type.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Glutaminase/antagonists & inhibitors , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Oxidative Stress/drug effects , Sulfides/pharmacology , Thiadiazoles/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Epithelial-Mesenchymal Transition , Genetic Association Studies , Glutaminase/metabolism , Humans , Lung Neoplasms/metabolism , Molecular Targeted Therapy
9.
Cancer Cell ; 24(3): 379-93, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-24029234

ABSTRACT

Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome-destabilizing experimental anticancer agent siramesine inhibits ASM by interfering with the binding of ASM to its essential lysosomal cofactor, bis(monoacylglycero)phosphate. Like siramesine, several clinically relevant ASM inhibitors trigger cancer-specific lysosomal cell death, reduce tumor growth in vivo, and revert multidrug resistance. Their cancer selectivity is associated with transformation-associated reduction in ASM expression and subsequent failure to maintain sphingomyelin hydrolysis during drug exposure. Taken together, these data identify ASM as an attractive target for cancer therapy.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Enzyme Inhibitors/pharmacology , Lysosomes/metabolism , Sphingolipids/metabolism , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Cell Death/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm , Enzyme Activation/drug effects , Enzyme Inhibitors/toxicity , Female , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Humans , Indoles/pharmacology , Indoles/toxicity , Mice , Mice, Transgenic , Phenotype , Spiro Compounds/pharmacology , Spiro Compounds/toxicity , Tocopherols/pharmacology , Xenograft Model Antitumor Assays
10.
PLoS One ; 5(8): e12454, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20805995

ABSTRACT

The Arf tumor suppressor acts as a sensor of oncogenic signals, countering aberrant proliferation in large part via activation of the p53 transcriptional program, though a number of p53-independent functions have been described. Mounting evidence suggests that, in addition to promoting tumorigenesis via disruptions in the homeostatic balance between cell proliferation and apoptosis of overt cancer cells, genetic alterations leading to tumor suppressor loss of function or oncogene gain of function can also incite tumor development via effects on the tumor microenvironment. In a transgenic mouse model of multi-stage pancreatic neuroendocrine carcinogenesis (PNET) driven by inhibition of the canonical p53 and Rb tumor suppressors with SV40 large T-antigen (Tag), stochastic progression to tumors is limited in part by a requirement for initiation of an angiogenic switch. Despite inhibition of p53 by Tag in this mouse PNET model, concomitant disruption of Arf via genetic knockout resulted in a significantly accelerated pathway to tumor formation that was surprisingly not driven by alterations in tumor cell proliferation or apoptosis, but rather via earlier activation of the angiogenic switch. In the setting of a constitutional p53 gene knockout, loss of Arf also accelerated tumor development, albeit to a lesser degree. These findings demonstrate that Arf loss of function can promote tumorigenesis via facilitating angiogenesis, at least in part, through p53-independent mechanisms.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/metabolism , Neovascularization, Pathologic/genetics , Neuroendocrine Tumors/blood supply , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/blood supply , Pancreatic Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis/genetics , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p16/deficiency , Cyclin-Dependent Kinase Inhibitor p16/genetics , Disease Models, Animal , Disease Progression , Gene Knockout Techniques , Mice , Mice, Inbred C57BL , Neoplasm Staging , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Stromal Cells/metabolism
11.
Proc Natl Acad Sci U S A ; 107(24): 10791-8, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20457905

ABSTRACT

The type 1 insulin-like growth factor receptor (IGF-1R) tyrosine kinase is an important mediator of the protumorigenic effects of IGF-I/II, and inhibitors of IGF-1R signaling are currently being tested in clinical cancer trials aiming to assess the utility of this receptor as a therapeutic target. Despite mounting evidence that the highly homologous insulin receptor (IR) can also convey protumorigenic signals, its direct role in cancer progression has not been genetically defined in vivo, and it remains unclear whether such a role for IR signaling could compromise the efficacy of selective IGF-1R targeting strategies. A transgenic mouse model of pancreatic neuroendocrine carcinogenesis engages the IGF signaling pathway, as revealed by its dependence on IGF-II and by accelerated malignant progression upon IGF-1R overexpression. Surprisingly, preclinical trials with an inhibitory monoclonal antibody to IGF-1R did not significantly impact tumor growth, prompting us to investigate the involvement of IR. The levels of IR were found to be significantly up-regulated during multistep progression from hyperplastic lesions to islet tumors. Its functional involvement was revealed by genetic disruption of the IR gene in the oncogene-expressing pancreatic beta cells, which resulted in reduced tumor burden accompanied by increased apoptosis. Notably, the IR knockout tumors now exhibited sensitivity to anti-IGF-1R therapy; similarly, high IR to IGF-1R ratios demonstrably conveyed resistance to IGF-1R inhibition in human breast cancer cells. The results predict that elevated IR signaling before and after treatment will respectively manifest intrinsic and adaptive resistance to anti-IGF-1R therapies.


Subject(s)
Neoplasms, Experimental/metabolism , Neoplasms, Experimental/therapy , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, Insulin/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/therapy , Receptor, IGF Type 2/metabolism , Receptor, Insulin/deficiency , Receptor, Insulin/genetics , Signal Transduction
12.
PLoS One ; 4(2): e4455, 2009.
Article in English | MEDLINE | ID: mdl-19209227

ABSTRACT

Tumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-x(L), demonstrated accelerated tumor formation and growth. To specifically assess the role of endogenous Bcl-x in regulating apoptosis and tumor progression in this model, we engineered a pancreatic beta-cell-specific knockout of both alleles of Bcl-x using the Cre-LoxP system of homologous recombination. Surprisingly, there was no appreciable effect on tumor cell apoptosis rates or on tumor growth in the Bcl-x knockout mice. Other anti-apoptotic Bcl-2 family members were expressed but not substantively altered at the mRNA level in the Bcl-x-null tumors, suggestive of redundancy without compensatory transcriptional up-regulation. Interestingly, the incidence of invasive carcinomas was reduced, and tumor cells lacking Bcl-x were impaired in invasion in a two-chamber trans-well assay under conditions mimicking hypoxia. Thus, while the function of Bcl-x in suppressing apoptosis and thereby promoting tumor growth is evidently redundant, genetic ablation implicates Bcl-x in selectively facilitating invasion, consistent with a recent report documenting a pro-invasive capability of Bcl-x(L) upon exogenous over-expression.


Subject(s)
Apoptosis , Gene Deletion , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , bcl-X Protein/deficiency , Animals , Cell Movement , Cell Proliferation , Disease Models, Animal , Disease Progression , GTPase-Activating Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Mice , Mice, Knockout , Neoplasm Invasiveness , Neuroendocrine Tumors/genetics , Organ Specificity , Pancreatic Neoplasms/genetics , Transcription, Genetic , Up-Regulation/genetics , bcl-X Protein/metabolism
13.
Arthritis Rheum ; 50(1): 233-41, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14730621

ABSTRACT

OBJECTIVE: To investigate the association of specific autoantibodies with distinct disease phenotypes. The association of autoantibodies to nucleophosmin/B23 with pulmonary hypertension in scleroderma, and the susceptibility of autoantigens to cleavage by granzyme B (GB), provided a focus for these studies. METHODS: Intact cells were subjected to cytotoxic lymphocyte granule-induced death, and the susceptibility of autoantigens to cleavage by GB was addressed by immunoblotting and/or by a novel immunofluorescence assay. RESULTS: B23 was cleaved efficiently by GB in vitro, but was highly resistant to cleavage by GB during cytotoxic lymphocyte granule-mediated death of many intact cell types. In contrast, this molecule was highly susceptible to GB-mediated proteolysis exclusively in differentiated vascular smooth muscle cells. Topoisomerase I and several other GB substrates did not show this striking change in cleavage susceptibility in different cell types. CONCLUSION: These data demonstrate that the cleavage of B23 by GB in intact cells is dependent upon both cell type and phenotype. The susceptibility of this autoantigen (which is associated with a distinct pulmonary vascular phenotype in scleroderma) to GB-mediated proteolysis selectively in vascular smooth muscle cells suggests that the GB-cleavable conformation of autoantigens may occur selectively in the target tissue, and may play a role in shaping the phenotype-specific autoimmune response.


Subject(s)
Autoantigens/immunology , Cell Nucleolus/immunology , Muscle, Smooth, Vascular/immunology , Nuclear Proteins/immunology , Serine Endopeptidases/pharmacology , Autoantigens/genetics , Autoantigens/metabolism , Cell Death , Cell Differentiation , Cytoplasmic Granules/immunology , DNA Topoisomerases, Type I/metabolism , Granzymes , HeLa Cells , Humans , K562 Cells , Muscle, Smooth, Vascular/cytology , Mutagenesis, Site-Directed , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleophosmin , Phenotype , Serine Endopeptidases/metabolism , T-Lymphocytes, Cytotoxic/metabolism
14.
Proc Natl Acad Sci U S A ; 100(21): 12361-6, 2003 Oct 14.
Article in English | MEDLINE | ID: mdl-14519847

ABSTRACT

The association of a specific autoantibody response with distinct disease phenotypes is observed in both autoimmune diseases and cancer. Although the underlying mechanisms remain unclear, it is likely that unique properties of disease-specific autoantigens expressed in the relevant target cells play a role. It has recently been observed that the majority of autoantigens targeted across the spectrum of systemic autoimmune diseases (but not nonautoantigens) are selectively cleaved by the cytotoxic lymphocyte granule protease granzyme B (GB), generating unique fragments not observed during other forms of cell death. Although susceptibility of a molecule to cleavage by GB strongly predicts autoantigen status, the significance of this association is unclear. We used hepatocellular carcinoma and the hepatocellular carcinoma autoantigen, nucleophosmin/B23, as a model system to define the unique features of disease-specific autoantigens in the relevant disease microenvironment. These studies revealed a striking, selective susceptibility of B23 to cleavage by GB in extracts of neoplastic liver. The increased sensitivity of tumor B23 to proteolysis by GB was accompanied by slightly increased mobility on SDS/PAGE, altered subcellular localization, enrichment of an SDS-stable oligomeric form of B23, and recognition by a conformation-specific antibody detecting a B23 epitope ending at the GB cleavage site. In vitro studies demonstrated that this unique B23 conformation and resultant increased susceptibility to cleavage by GB arise when B23 translation is initiated at methionine-7. We propose that unique features of autoantigens in the disease-relevant microenvironment may regulate susceptibility to cleavage by GB and their selection by the specific autoimmune response.


Subject(s)
Antigens, Neoplasm/chemistry , Autoantigens/chemistry , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/immunology , Nuclear Proteins/chemistry , Nuclear Proteins/immunology , Antibodies, Neoplasm/biosynthesis , Antibody Specificity , Antigens, Neoplasm/metabolism , Autoantibodies/biosynthesis , Autoantigens/metabolism , Binding Sites , Carcinoma, Hepatocellular/metabolism , Granzymes , Hepatocytes/immunology , Hepatocytes/metabolism , Humans , In Vitro Techniques , Liver Neoplasms/metabolism , Nuclear Proteins/metabolism , Nucleophosmin , Protein Conformation , Serine Endopeptidases/metabolism
15.
Arthritis Rheum ; 49(1): 85-92, 2003 Feb 15.
Article in English | MEDLINE | ID: mdl-12579598

ABSTRACT

OBJECTIVE: To determine whether the abundant nucleolar phosphoprotein B23 is a target of autoantibodies in scleroderma, and to examine the clinical phenotype associated with these antibodies. METHODS: Ninety-two randomly selected scleroderma sera were screened by enzyme-linked immunosorbent assay against recombinant human B23. Demographic, clinical, and serologic parameters associated with B23 autoantibody status were examined. RESULTS: We demonstrated that autoantibodies against B23 occur in approximately 11% of sera obtained from patients with scleroderma. B23 seropositivity was related to pulmonary hypertension, antifibrillarin antibody, anti-RNP antibody, and decreased lung capacity. In multivariate analysis, B23 autoantibodies remained strongly associated with moderate-to-severe pulmonary hypertension and antifibrillarin antibodies. CONCLUSION: These data unite B23 with the group of nucleolar autoantigens targeted in scleroderma and thus focus attention on changes in the nucleolus that render its components immunogenic in this disease. The demonstration that antibodies to B23 are associated with an increased prevalence of pulmonary hypertension points to anti-B23 antibodies as a possible marker of a specific phenotype in scleroderma.


Subject(s)
Autoantibodies/blood , Cell Nucleolus/immunology , Hypertension, Pulmonary/immunology , Nuclear Proteins/immunology , Scleroderma, Systemic/immunology , Adult , Cell Nucleolus/chemistry , Echocardiography , Female , Humans , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/diagnosis , Longitudinal Studies , Male , Middle Aged , Multivariate Analysis , Nucleophosmin , Respiratory Function Tests , Scleroderma, Systemic/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...