Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Tech (Berl) ; 64(3): 365-371, 2019 May 27.
Article in English | MEDLINE | ID: mdl-29949505

ABSTRACT

The gold standard for estimating blood alcohol content (BAC) after alcohol consumption is a blood sample analysis. An innovative technology to estimate BAC is based on impedance cardiography and bioimpedance spectroscopy (BIS). This study investigated whether it is possible to estimate increasing blood alcohol levels during a drinking trial with bioimpedance measurement techniques. Twenty-one healthy volunteers were assigned to a test (ethanol) group (ETH) or a reference group (H2O). After baseline measurements, the ETH group ingested 120 ml of vodka, followed by a resorption phase of 50 min. Then, bioimpedance and breath alcohol measurements were performed. Thereafter, 60 ml of vodka was ingested and another resorption phase of 50 min was followed by bioimpedance and breath alcohol measurements. This procedure was repeated until alcohol levels exceeded 0.4 mg/l. The H2O group performed in the same way with water. For all measurements, extracellular resistance (Re) and the base impedance (Z0) were computed. Regarding BIS, several parameters differed significantly between the ETH and the H2O group. Re increased in ETH (p=0.005), but not in the H2O group when comparing the first and last measurements. Z0 also increased significantly in the ETH group (p=0.001). To conclude, with BIS measurements, it is possible to measure increasing blood alcohol levels.


Subject(s)
Alcoholic Intoxication/blood , Cardiography, Impedance/methods , Cardiography, Impedance/standards , Electric Impedance , Humans , Pilot Projects , Spectrum Analysis
2.
IEEE Trans Biomed Circuits Syst ; 9(3): 412-20, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25148671

ABSTRACT

Bioimpedance measurements on the human thorax are suitable for assessment of body composition or hemodynamic parameters, such as stroke volume; they are non-invasive, easy in application and inexpensive. When targeting personal healthcare scenarios, the technology can be integrated into textiles to increase ease, comfort and coverage of measurements. Bioimpedance is generally measured using two electrodes injecting low alternating currents (0.5-10 mA) and two additional electrodes to measure the corresponding voltage drop. The impedance is measured either spectroscopically (bioimpedance spectroscopy, BIS) between 5 kHz and 1 MHz or continuously at a fixed frequency around 100 kHz (impedance cardiography, ICG). A thorax simulator is being developed for testing and calibration of bioimpedance devices and other new developments. For the first time, it is possible to mimic the complete time-variant properties of the thorax during an impedance measurement. This includes the dynamic real part and dynamic imaginary part of the impedance with a peak-to-peak value of 0.2 Ω and an adjustable base impedance (24.6 Ω ≥ Z0 ≥ 51.6 Ω). Another novelty is adjustable complex electrode-skin contact impedances for up to 8 electrodes to evaluate bioimpedance devices in combination with textile electrodes. In addition, an electrocardiographic signal is provided for cardiographic measurements which is used in ICG devices. This provides the possibility to generate physiologic impedance changes, and in combination with an ECG, all parameters of interest such as stroke volume (SV), pre-ejection period (PEP) or extracellular resistance (Re) can be simulated. The speed of all dynamic signals can be altered. The simulator was successfully tested with commercially available BIS and ICG devices and the preset signals are measured with high correlation (r = 0.996).


Subject(s)
Dielectric Spectroscopy/instrumentation , Thorax/physiology , Electrocardiography/instrumentation , Electrodes , Humans
3.
Physiol Meas ; 35(7): 1451-68, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24901446

ABSTRACT

Impedance cardiography is a simple and inexpensive method to acquire data on hemodynamic parameters. This study analyzes the influence of four dynamic physiological sources (aortic expansion, heart contraction, lung perfusion and erythrocyte orientation) on the impedance signal using a model of the human thorax with a high temporal resolution (125 Hz) based on human MRI data. Simulations of electromagnetic fields were conducted using the finite element method. The ICG signal caused by these sources shows very good agreement with the measured signals (r = 0.89). Standard algorithms can be used to extract characteristic points to calculate left ventricular ejection time and stroke volume (SV). In the presented model, the calculated SV equals the implemented left ventricular volume change of the heart. It is shown that impedance changes due to lung perfusion and heart contraction compensate themselves, and that erythrocyte orientation together with the aortic impedance basically form the ICG signal while taking its characteristic morphology from the aortic signal. The model is robust to conductivity changes of tissues and organ displacements. In addition, it reflects the multi-frequency behavior of the thoracic impedance.


Subject(s)
Cardiography, Impedance , Cardiovascular Physiological Phenomena , Computer Simulation , Finite Element Analysis , Models, Biological , Algorithms , Aorta/physiology , Electric Conductivity , Electric Impedance , Electromagnetic Fields , Erythrocytes/physiology , Heart/physiology , Humans , Lung/physiology , Models, Cardiovascular , Organ Size , Stroke Volume , Thorax , Time Factors
4.
Physiol Meas ; 35(6): 1181-96, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24846072

ABSTRACT

Measurement of hemodynamic parameters such as stroke volume (SV) via impedance cardiography (ICG) is an easy, non-invasive and inexpensive way to assess the health status of the heart. We present a possibility to use this technology for monitoring risk patients at home. The IMPACT Shirt (IMPedAnce Cardiography Textile) has been developed with integrated textile electrodes and textile wiring, as well as with portable miniaturized hardware. Several textile materials were characterized in vitro and in vivo to analyze their performance with regard to washability, and electrical characteristics such as skin-electrode impedance, capacitive coupling and subjective tactile feeling. The small lightweight hardware measures ECG and ICG continuously and transmits wireless data via Bluetooth to a mobile phone (Android) or PC for further analysis. A lithium polymer battery supplies the circuit and can be charged via a micro-USB. Results of a proof-of-concept trial show excellent agreement between SV assessed by a commercial device and the developed system. The IMPACT Shirt allows monitoring of SV and ECG on a daily basis at the patient's home.


Subject(s)
Cardiography, Impedance , Clothing , Textiles , Adult , Electrodes , Humans , Male , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...