Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm X ; 8: 100263, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39040516

ABSTRACT

Hot-melt extrusion (HME) potentially coupled with 3D printing is a promising technique for the manufacturing of dosage forms such as drug-eluting implants which might even be individually adapted to patient-specific anatomy. However, these manufacturing methods involve the risk of thermal degradation of incorporated drugs during processing. In this work, the stability of the anti-inflammatory drug dexamethasone (DEX) was studied during HME using the polymers Eudragit® RS, ethyl cellulose and polyethylene oxide. The extrusion process was performed at different temperatures. Furthermore, the influence of accelerated screw speed, the addition of the plasticizers triethyl citrate and polyethylene glycol 6000 or the addition of the antioxidants butylated hydroxytoluene and tocopherol in two concentrations were studied. The DEX recovery was analyzed by a high performance liquid chromatography method suitable for the detection of thermal degradation products. The strongest impact on the drug stability was found for the processing temperature, which was found to reduce the DEX recovery to <20% for certain processing conditions. In addition, differences between tested polymers were observed, whereas the use of additives did not result in remarkable changes in drug stability. In conclusion, suitable extrusion parameters were identified for the processing of DEX with high drug recovery rates for the tested polymers. Moreover, the importance of a suitable analysis method for drug stability during HME that is influenced by several parameters was highlighted.

2.
Pharmaceutics ; 14(6)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35745813

ABSTRACT

Postoperative restenosis in patients with external ear canal (EEC) atresia or stenosis is a common complication following canaloplasty. Our aim in this study was to explore the feasibility of using a three dimensionally (3D)-printed, patient-individualized, drug ((dexamethasone (DEX)), and ciprofloxacin (cipro))-releasing external ear canal implant (EECI) as a postoperative stent after canaloplasty. We designed and pre-clinically tested this novel implant for drug release (by high-performance liquid chromatography), biocompatibility (by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay), bio-efficacy (by the TNF-α (tumor necrosis factor-alpha)-reduction test (DEX) and inhibition zone test (for cipro)), and microbial contamination (formation of turbidity or sediments in culture medium). The EECI was implanted for the first time to one patient with a history of congenital EEC atresia and state after three canaloplasties due to EEC restenosis. The preclinical tests revealed no cytotoxic effect of the used materials; an antibacterial effect was verified against the bacteria Staphylococcus aureus and Pseudomonas aeruginosa, and the tested UV-irradiated EECI showed no microbiological contamination. Based on the test results, the combination of silicone with 1% DEX and 0.3% cipro was chosen to treat the patient. The EECI was implantable into the EEC; the postoperative follow-up visits revealed no otogenic symptoms or infections and the EECI was explanted three months postoperatively. Even at 12 months postoperatively, the EEC showed good epithelialization and patency. Here, we report the first ever clinical application of an individualized, drug-releasing, mechanically flexible implant and suggest that our novel EECI represents a safe and effective method for postoperatively stenting the reconstructed EEC.

3.
Sci Rep ; 12(1): 6229, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35422472

ABSTRACT

Cold storage of platelet concentrates (PC) has become attractive due to the reduced risk of bacterial proliferation, but in vivo circulation time of cold-stored platelets is reduced. Ca2+ release from storage organelles and higher activity of Ca2+ pumps at temperatures < 15 °C triggers cytoskeleton changes. This is suppressed by Mg2+ addition, avoiding a shift in Ca2+ hemostasis and cytoskeletal alterations. We report on the impact of 2-10 mM Mg2+ on cytoskeleton alterations of platelets from PC stored at room temperature (RT) or 4 °C in additive solution (PAS), 30% plasma. Deformation of platelets was assessed by real-time deformability cytometry (RT-DC), a method for biomechanical cell characterization. Deformation was strongly affected by storage at 4 °C and preserved by Mg2+ addition ≥ 4 mM Mg2+ (mean ± SD of median deformation 4 °C vs. 4 °C + 10 mM Mg2+ 0.073 ± 0.021 vs. 0.118 ± 0.023, p < 0.01; n = 6, day 7). These results were confirmed by immunofluorescence microscopy, showing that Mg2+ ≥ 4 mM prevents 4 °C storage induced cytoskeletal structure lesion. Standard in vitro platelet function tests showed minor differences between RT and cold-stored platelets. Hypotonic shock response was not significantly different between RT stored (56.38 ± 29.36%) and cold-stored platelets with (55.22 ± 11.16%) or without magnesium (45.65 ± 11.59%; p = 0.042, all n = 6, day 1). CD62P expression and platelet aggregation response were similar between RT and 4 °C stored platelets, with minor changes in the presence of higher Mg2+ concentrations. In conclusion, increasing Mg2+ up to 10 mM in PAS counteracts 4 °C storage lesions in platelets, maintains platelet cytoskeletal integrity and biomechanical properties comparable to RT stored platelets.


Subject(s)
Blood Preservation , Magnesium , Blood Platelets , Blood Preservation/methods , Cytoskeleton , Magnesium/pharmacology , Platelet Aggregation
SELECTION OF CITATIONS
SEARCH DETAIL
...