Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Opt Express ; 30(25): 45008-45019, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36522912

ABSTRACT

We demonstrate rapid imaging based on four-wave mixing (FWM) by assessing the quality of advanced materials through measurement of their nonlinear response, exciton dephasing, and exciton lifetimes. We use a WSe2 monolayer grown by chemical vapor deposition as a canonical example to demonstrate these capabilities. By comparison, we show that extracting material parameters such as FWM intensity, dephasing times, excited state lifetimes, and distribution of dark/localized states allows for a more accurate assessment of the quality of a sample than current prevalent techniques, including white light microscopy and linear micro-reflectance spectroscopy. We further discuss future improvements of the ultrafast FWM techniques by modeling the robustness of exponential decay fits to different spacing of the sampling points. Employing ultrafast nonlinear imaging in real-time at room temperature bears the potential for rapid in-situ sample characterization of advanced materials and beyond.

2.
Opt Express ; 30(21): 38896-38906, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258443

ABSTRACT

Time-resolved spectroscopy and, in particular, transient absorption methods have been widely employed to study the dynamics of materials, usually achieving time resolution down to femtoseconds with measurement windows up to a few nanoseconds. Various techniques have been developed to extend the measurement duration up to milliseconds and beyond to permit probing slower dynamics. However, most of these either demand complicated and expensive equipment or do not provide broadband spectral coverage. This paper proposes a transient absorption technique in which an ultra-short pulse laser and a broadband incoherent continuous-wave light source are employed as pump and probe, respectively. Detection of the transient probe transmission is performed in a time-resolved fashion with a fast photodiode after a monochromator and the data is recorded with an oscilloscope. The time resolution is determined by the electronic bandwidth of the detection and acquisition devices and is ∼1 ns, with a measurement duration window of up to milliseconds and a spectral resolution of <2 nm covering from 0.4 to 2 µm. In addition, the setup can be employed to measure time- and spectrally-resolved photoluminescence.

3.
Phys Rev Lett ; 128(20): 203603, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35657853

ABSTRACT

We report tunable excitation-induced dipole-dipole interactions between silicon-vacancy color centers in diamond at cryogenic temperatures. These interactions couple centers into collective states, and excitation-induced shifts tag the excitation level of these collective states against the background of excited single centers. By characterizing the phase and amplitude of the spectrally resolved interaction-induced signal, we observe oscillations in the interaction strength and population state of the collective states as a function of excitation pulse area. Our results demonstrate that excitation-induced dipole-dipole interactions between color centers provide a route to manipulating collective intercenter states in the context of a congested, inhomogeneous ensemble.

4.
Phys Rev Lett ; 126(21): 213601, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34114873

ABSTRACT

We characterize a high-density sample of negatively charged silicon-vacancy (SiV^{-}) centers in diamond using collinear optical multidimensional coherent spectroscopy. By comparing the results of complementary signal detection schemes, we identify a hidden population of SiV^{-} centers that is not typically observed in photoluminescence and which exhibits significant spectral inhomogeneity and extended electronic T_{2} times. The phenomenon is likely caused by strain, indicating a potential mechanism for controlling electric coherence in color-center-based quantum devices.

5.
Phys Rev Lett ; 120(20): 203903, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29864315

ABSTRACT

Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices. However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2ω_{1}-ω_{2} four-wave mixing response as a function of detuning ω_{1}-ω_{2}, we find up to 10^{-5} conversion efficiency with a gradient-field contribution to χ_{Au}^{(3)} of up to 10^{-19} m^{2}/V^{2}. The results are in good agreement with the theory based on plasma hydrodynamics and underlying electron dynamics. The associated increase in the nonlinear conversion efficiency with a decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension of coherent multidimensional spectroscopies to the nanoscale.

6.
Nano Lett ; 17(11): 6684-6689, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28915056

ABSTRACT

Using polarization-resolved transient reflection spectroscopy, we investigate a metasurface consisting of coherently vibrating nanophotonic U-shaped split-ring meta-atoms that exhibit colocalized optical and mechanical resonances. With an array of these resonators formed of gold on glass, essentially miniature tuning forks, we monitor the visible-pump induced gigahertz oscillations in reflected infrared light intensity to probe the multimodal vibrational response. Numerical simulations of the associated transient deformations and strain fields elucidate the complex nanomechanical dynamics contributing to the ultrafast optical modulation and point to the role of acousto-plasmonic interactions through the opening and closing motion of the SRR gaps as the dominant effect. Applications include ultrafast acoustooptic modulator design and sensing.

7.
Nat Commun ; 7: 13510, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27848938

ABSTRACT

Single-photon emission from the nitrogen-vacancy defect in diamond constitutes one of its many proposed applications. Owing to its doubly degenerate 3E electronic excited state, photons from this defect can be emitted by two optical transitions with perpendicular polarization. Previous measurements have indicated that orbital-selective photoexcitation does not, however, yield photoluminescence with well-defined polarizations, thus hinting at orbital-averaging dynamics even at cryogenic temperatures. Here we employ femtosecond polarization anisotropy spectroscopy to investigate the ultrafast electronic dynamics of the 3E state. We observe subpicosecond electronic dephasing dynamics even at cryogenic temperatures, up to five orders of magnitude faster than dephasing rates suggested by previous frequency- and time-domain measurements. Ab initio molecular dynamics simulations assign the ultrafast depolarization dynamics to nonadiabatic transitions and phonon-induced electronic dephasing between the two components of the 3E state. Our results provide an explanation for the ultrafast orbital averaging that exists even at cryogenic temperatures.

8.
Nat Nanotechnol ; 11(5): 459-64, 2016 05.
Article in English | MEDLINE | ID: mdl-26854567

ABSTRACT

Femtosecond nonlinear optical imaging with nanoscale spatial resolution would provide access to coupled degrees of freedom and ultrafast response functions on the characteristic length scales of electronic and vibrational excitations. Although near-field microscopy provides the desired spatial resolution, the design of a broadband high-contrast nanoprobe for ultrafast temporal resolution is challenging due to the inherently weak nonlinear optical signals generated in subwavelength volumes. Here, we demonstrate broadband four-wave mixing with enhanced nonlinear frequency conversion efficiency at the apex of a nanometre conical tip. Far-field light is coupled through a grating at the shaft of the tip, generating plasmons that propagate to the apex while undergoing asymptotic compression and amplification, resulting in a nonlinear conversion efficiency of up to 1 × 10(-5). We apply this nonlinear nanoprobe to image the few-femtosecond coherent dynamics of plasmonic hotspots on a nanostructured gold surface with spatial resolution of a few tens of nanometres. The approach can be generalized towards spatiotemporal imaging and control of coherent dynamics on the nanoscale, including the extension to multidimensional spectroscopy and imaging.

9.
Nano Lett ; 13(12): 5925-30, 2013.
Article in English | MEDLINE | ID: mdl-24093134

ABSTRACT

We present a comparative study of the ultrafast photoconductivity in two different forms of one-dimensional (1D) quantum-confined graphene nanostructures: structurally well-defined semiconducting graphene nanoribbons (GNRs) fabricated by a "bottom-up" chemical synthesis approach and semiconducting carbon nanotubes (CNTs) with a similar bandgap energy. Transient photoconductivities of both materials were measured using time-resolved terahertz spectroscopy, allowing for contact-free measurements of complex-valued photoconductivity spectra with subpicosecond time-resolution. We show that, while the THz photoresponse seems very different for the two systems, a single model of free carriers experiencing backscattering when moving along the long axis of the CNTs or GNRs provides a quantitative description of both sets of results, revealing significantly longer carrier scattering times for CNTs (ca. 150 fs) than for GNRs (ca. 30 fs) and in turn higher carrier mobilities. This difference can be explained by differences in band structures and phonon scattering and the greater structural rigidity of CNTs as compared to GNRs, minimizing the influence of bending and/or torsional defects on the electron transport.


Subject(s)
Graphite/chemistry , Nanotubes, Carbon/chemistry , Electron Transport , Particle Size
10.
Nano Lett ; 12(9): 4937-42, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22881597

ABSTRACT

We report on the gradual evolution of the conductivity of spherical CdTe nanocrystals of increasing size from the regime of strong quantum confinement with truly discrete energy levels to the regime of weak confinement with closely spaced hole states. We use the high-frequency (terahertz) real and imaginary conductivities of optically injected carriers in the nanocrystals to report on the degree of quantum confinement. For the smaller CdTe nanocrystals (3 nm < radius < 5 nm), the complex terahertz conductivity is purely imaginary. For nanocrystals with radii exceeding 5 nm, we observe the onset of real conductivity, which is attributed to the increasingly smaller separation between the hole states. Remarkably, this onset occurs for a nanocrystal radius significantly smaller than the bulk exciton Bohr radius a(B) ∼ 7 nm and cannot be explained by purely electronic transitions between hole states, as evidenced by tight-binding calculations. The real-valued conductivity observed in the larger nanocrystals can be explained by the emergence of mixed carrier-phonon, that is, polaron, states due to hole transitions that become resonant with, and couple strongly to, optical phonon modes for larger QDs. These polaron states possess larger oscillator strengths and broader absorption, and thereby give rise to enhanced real conductivity within the nanocrystals despite the confinement.


Subject(s)
Models, Chemical , Nanostructures/chemistry , Nanostructures/ultrastructure , Semiconductors , Computer Simulation , Crystallization , Electric Conductivity , Particle Size , Quantum Theory
11.
Nano Lett ; 12(7): 3821-7, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22738182

ABSTRACT

Free-standing semiconductor nanowires on bulk substrates are increasingly being explored as building blocks for novel optoelectronic devices such as tandem solar cells. Although carrier transport properties, such as mobility and trap densities, are essential for such applications, it has remained challenging to quantify these properties. Here, we report on a method that permits the direct, contact-free quantification of nanowire carrier diffusivity and trap densities in thin (∼25 nm wide) silicon nanowires-without any additional processing steps such as transfer of wires onto a substrate. The approach relies on the very different terahertz (THz) conductivity response of photoinjected carriers within the silicon nanowires from those in the silicon substrate. This allows quantifying both the picosecond dynamics and the efficiency of charge carrier transport from the silicon nanowires into the silicon substrate. Varying the excitation density allows for quantification of nanowire trap densities: for sufficiently low excitation fluences the diffusion process stalls because the majority of charge carriers become trapped at nanowire surface defects. Using a model that includes these effects, we determine both the diffusion constant and the nanowire trap density. The trap density is found to be orders of magnitude larger than the charge carrier density that would be generated by AM1.5 sunlight.

12.
Opt Express ; 20(5): 5052-60, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22418310

ABSTRACT

Plasmonic bowtie antennas made of doped silicon can operate as plasmonic resonators at terahertz (THz) frequencies and provide large field enhancement close to their gap. We demonstrate both experimentally and theoretically that the field confinement close to the surface of the antenna enables the detection of ultrathin (100 nm) inorganic films, about 3750 times thinner than the free space wavelength. Based on model calculations, we conclude that the detection sensitivity and its variation with the thickness of the deposited layer are related to both the decay of the local THz field profile around the antenna and the local field enhancement in the gap of the bowtie antenna. This large field enhancement has the potential to improve the detection limits of plasmon-based biological and chemical sensors.


Subject(s)
Conductometry/instrumentation , Optical Devices , Semiconductors , Surface Plasmon Resonance/instrumentation , Transducers , Electric Impedance , Equipment Design , Equipment Failure Analysis , Terahertz Radiation
13.
Opt Express ; 18(22): 23226-35, 2010 Oct 25.
Article in English | MEDLINE | ID: mdl-21164664

ABSTRACT

Localized surface plasmon polaritons (LSPPs) provide an efficient means of achieving extreme light concentration. In recent years, their active control has become a major aspiration of plasmonic research. Here, we demonstrate direct control of semiconductor bowtie antennas, enabling active excitation of LSPPs, at terahertz (THz) frequencies. We modify the LSPPs by ultrafast optical modulation of the free carrier density in the plasmonic structure itself, allowing for active control of the semiconductor antennas on picosecond timescales. Moreover, this control enables the manipulation of the field intensity enhancements in ranges of four orders of magnitude.

SELECTION OF CITATIONS
SEARCH DETAIL
...