Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 14(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38540791

ABSTRACT

In order to evaluate the role of substituents at 3-C and 17-C in the cytotoxic and cytoprotective actions of DHEA and 5-AED molecules, their derivatives were synthesized by esterification using the corresponding acid anhydrides or acid chlorides. As a result, seven compounds were obtained: four DHEA derivatives (DHEA 3-propionate, DHEA 3-butanoate, DHEA 3-acetate, DHEA 3-methylsulfonate) and three 5-AED derivatives (5-AED 3-butanoate, 5-AED 3,17-dipropionate, 5-AED 3,17-dibutanoate). All of these compounds showed micromolar cytotoxic activity toward HeLa and K562 human cancer cells. The maximum cytostatic effect during long-term incubation for five days with HeLa and K562 cells was demonstrated by the propionic esters of the steroids: DHEA 3-propionate and 5-AED 3,17-dipropionate. These compounds stimulated the growth of normal Wi-38 cells by 30-50%, which indicates their cytoprotective properties toward noncancerous cells. The synthesized steroid derivatives exhibited antioxidant activity by reducing the production of reactive oxygen species (ROS) by peripheral blood mononuclear cells from healthy volunteers, as demonstrated in a luminol-stimulated chemiluminescence assay. The highest antioxidant effects were shown for the propionate ester of the steroid DHEA. DHEA 3-propionate inhibited luminol-stimulated chemiluminescence by 73% compared to the control, DHEA, which inhibited it only by 15%. These data show the promise of propionic substituents at 3-C and 17-C in steroid molecules for the creation of immunostimulatory and cytoprotective substances with antioxidant properties.


Subject(s)
Androstenediol , Dehydroepiandrosterone , Humans , Dehydroepiandrosterone/pharmacology , Luminol , Leukocytes, Mononuclear , Healthy Volunteers , K562 Cells , Luminescence , Propionates , Steroids
2.
Pharmaceutics ; 15(12)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38140127

ABSTRACT

A comparative analysis of the cytostatic effects of progestins (gestobutanoyl, megestrol acetate, amol, dienogest, and medroxyprogesterone acetate), glucocorticoids (hydrocortisone, dexamethasone), and diclofenac on tumor cells was carried out in order to confirm their in silico predicted probabilities experimentally. The results showed the different sensitivity of HeLa, MCF-7, Hep-2, K-562, and Wi-38 cell lines to progestins, glucocorticoids, and diclofenac. The minimum IC50 was found for progestin gestobutanoyl (GB) as 18 µM for HeLa cells, and varied from 31 to 38 µM for MCF-7, Hep-2, and K-562. Glucocorticoids and diclofenac were much less cytotoxic in the HeLa, MCF-7, and Hep-2 cell lines than progestins, with IC50 values in the range of 150-3000 µM. Myelogenous leukemia K-562 cells were the least sensitive to the action of progestins and glucocorticoids but the most sensitive to diclofenac, which showed a pronounced cytotoxic effect with an IC50 of 31 µM. As we have shown earlier, progestins can uniquely modulate MPTP opening via the binding of adenine nucleotide translocase. On this basis, we evaluated the expression of adenylate nucleotide translocase ANT1 (SLC25 A4) as a possible participant in cytotoxic action in these cell lines after 48 h incubation with drugs. The results showed that progestins differently regulated ANT1 expression in different cell lines. Gestobutanoyl had the opposite effect on ANT1 expression in the HeLa, K562, and Wi-38 cells compared with the other progestins. It increased the ANT1 expression more than twofold in the HeLa and K562 cells but had no influence on the Wi-38 cells. Glucocorticoids and diclofenac increased ANT1 expression in the Wi-38 cells and decreased it in the K562, MCF-7, and Hep-2 cells. The modulation of ANT1 expression discovered in our study can be a new explanation of the cytotoxic and cytoprotective effects of hormones, which can vary depending on the cell type. ANT isoforms in normal and cancerous cells could be a new target for steroid hormone and anti-inflammatory drug action.

SELECTION OF CITATIONS
SEARCH DETAIL
...