Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(44): 30697-30707, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37934009

ABSTRACT

Flavin mononucleotide (FMN) is a highly versatile biological chromophore involved in a range of biochemical pathways including blue-light sensing proteins and the control of circadian rhythms. Questions exist about the effect of local amino acids on the electronic properties and photophysics of the chromophore. Using gas-phase anion laser photodissociation spectroscopy, we have measured the intrinsic electronic spectroscopy (3.1-5.7 eV) and accompanying photodissociative decay pathways of the native deprotonated form of FMN, i.e. [FMN-H]- complexed with the amino acids tryptophan (TRP) and glutamic acid (GLU), i.e. [FMN-H]-·TRP and [FMN-H]-·GLU, to investigate the extent to which these amino acids perturb the electronic properties and photodynamics of the [FMN-H]- chromophore. The overall photodepletion profiles of [FMN-H]-·TRP and [FMN-H]-·GLU are similar to that of the monomer, revealing that amino acid complexation occurs without significant spectral shifting of the [FMN-H]- electronic excitations over this region. Both [FMN-H]-·TRP and [FMN-H]-·GLU are observed to decay by non-statistical photodecay pathways, although the behaviour of [FMN-H]-·TRP is closer to statistical fragmentation. Long-lived FMN excited states (triplet) are therefore relatively quenched when TRP binds to [FMN-H]-. Importantly, we find that [FMN-H]-, [FMN-H]-·TRP and [FMN-H]-·GLU all decay predominantly via electron detachment following photoexcitation of the flavin chromophore, with amino acid complexation appearing not to inhibit this decay channel. The strong propensity for electron detachment is attributed to excited-state proton transfer within FMN, with proton transfer from a ribose alcohol to the phosphate preceding electron detachment.


Subject(s)
Protons , Tryptophan , Tryptophan/chemistry , Flavin Mononucleotide/chemistry , Glutamic Acid , Anions
2.
Phys Chem Chem Phys ; 23(2): 1021-1030, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33428696

ABSTRACT

Laser photodissociation spectroscopy (3.1-5.7 eV) has been applied to iodide complexes of the non-native nucleobases, 2-thiouracil (2-TU), 4-thiouracil (4-TU) and 2,4-thiouracil (2,4-TU), to probe the excited states and intracluster electron transfer as a function of sulphur atom substitution. Photodepletion is strong for all clusters (I-·2-TU, I-·4-TU and I-·2,4-TU) and is dominated by electron detachment processes. For I-·4-TU and I-·2,4-TU, photodecay is accompanied by formation of the respective molecular anions, 4-TU- and 2,4-TU-, behaviour that is not found for other nucleobases. Notably, the I-·2TU complex does not fragment with formation of its molecular anion. We attribute the novel formation of 4-TU- and 2,4-TU- to the fact that these valence anions are significantly more stable than 2-TU-. We observe further similar behaviour for I-·4-TU and I-·2,4-TU relating to the general profile of their photodepletion spectra, since both strongly resemble the intrinsic absorption spectra of the respective uncomplexed thiouracil molecule. This indicates that the nucleobase chromophore excitations are determining the clusters' spectral profile. In contrast, the I-·2-TU photodepletion spectrum is dominated by the electron detachment profile, with the near-threshold dipole-bound excited state being the only distinct spectral feature. We discuss these observations in the context of differences in the dipole moments of the thionucleobases, and their impact on the coupling of nucleobase-centred transitions onto the electron detachment spectrum.


Subject(s)
Electrons , Iodides/chemistry , Thiouracil/analogs & derivatives , Thiouracil/chemistry , Iodides/radiation effects , Molecular Structure , Spectrum Analysis , Thiouracil/radiation effects , Ultraviolet Rays
3.
Molecules ; 25(14)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664261

ABSTRACT

We present the first study to measure the dissociative photochemistry of 2-thiouracil (2-TU), an important nucleobase analogue with applications in molecular biology and pharmacology. Laser photodissociation spectroscopy is applied to the deprotonated and protonated forms of 2-TU, which are produced in the gas-phase using electrospray ionization mass spectrometry. Our results show that the deprotonated form of 2-thiouracil ([2-TU-H]-) decays predominantly by electron ejection and hence concomitant production of the [2-TU-H]· free-radical species, following photoexcitation across the UVA-UVC region. Thiocyanate (SCN-) and a m/z 93 fragment ion are also observed as photodecay products of [2-TU-H]- but at very low intensities. Photoexcitation of protonated 2-thiouracil ([2-TU·H]+) across the same UVA-UVC spectral region produces the m/z 96 cationic fragment as the major photofragment. This ion corresponds to ejection of an HS· radical from the precursor ion and is determined to be a product of direct excited state decay. Fragment ions associated with decay of the hot ground state (i.e., the ions we would expect to observe if 2-thiouracil was behaving like UV-dissipating uracil) are observed as much more minor products. This behaviour is consistent with enhanced intersystem crossing to triplet excited states compared to internal conversion back to the ground state. These are the first experiments to probe the effect of protonation/deprotonation on thionucleobase photochemistry, and hence explore the effect of pH at a molecular level on their photophysical properties.


Subject(s)
Thiouracil/chemistry , Electrons , Free Radicals/chemistry , Ions/chemistry , Photochemistry/methods , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...