Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 623(7988): 772-781, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968388

ABSTRACT

Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.


Subject(s)
Developmental Disabilities , Embryo, Mammalian , Mutation , Phenotype , Single-Cell Gene Expression Analysis , Animals , Mice , Cell Nucleus/genetics , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Gain of Function Mutation , Genotype , Loss of Function Mutation , Models, Genetic , Disease Models, Animal
2.
JCI Insight ; 8(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37698920

ABSTRACT

Superficial erythematous cutaneous vascular malformations are assumed to be blood vascular in origin, but cutaneous lymphatic malformations can contain blood and appear red. Management may be different and so an accurate diagnosis is important. Cutaneous malformations were investigated through 2D histology and 3D whole-mount histology. Two lesions were clinically considered as port-wine birthmarks and another 3 lesions as erythematous telangiectasias. The aims were (i) to demonstrate that cutaneous erythematous malformations including telangiectasia can represent a lymphatic phenotype, (ii) to determine if lesions represent expanded but otherwise normal or malformed lymphatics, and (iii) to determine if the presence of erythrocytes explained the red color. Microscopy revealed all lesions as lymphatic structures. Port-wine birthmarks proved to be cystic lesions, with nonuniform lymphatic marker expression and a disconnected lymphatic network suggesting a lymphatic malformation. Erythematous telangiectasias represented expanded but nonmalformed lymphatics. Blood within lymphatics appeared to explain the color. Blood-lymphatic shunts could be detected in the erythematous telangiectasia. In conclusion, erythematous cutaneous capillary lesions may be lymphatic in origin but clinically indistinguishable from blood vascular malformations. Biopsy is advised for correct phenotyping and management. Erythrocytes are the likely explanation for color accessing lymphatics through lympho-venous shunts.


Subject(s)
Telangiectasis , Vascular Malformations , Humans , Vascular Malformations/diagnosis , Capillaries , Veins , Telangiectasis/diagnosis
3.
Int J Mol Sci ; 23(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35457187

ABSTRACT

High-quality three-dimensional (3D) microscopy allows detailed, unrestricted and non-destructive imaging of entire volumetric tissue specimens and can therefore increase the diagnostic accuracy of histopathological tissue analysis. However, commonly used IgG antibodies are oftentimes not applicable to 3D imaging, due to their relatively large size and consequently inadequate tissue penetration and penetration speed. The lack of suitable reagents for 3D histopathology can be overcome by an emerging class of single-domain antibodies, referred to as nanobodies (Nbs), which can facilitate rapid and superior 2D and 3D histological stainings. Here, we report the generation and experimental validation of Nbs directed against the human endothelial cell-selective adhesion molecule (hESAM), which enables spatial visualization of blood vascular networks in whole-mount 3D imaging. After analysis of Nb binding properties and quality, selected Nb clones were validated in 2D and 3D imaging approaches, demonstrating comparable staining qualities to commercially available hESAM antibodies in 2D, as well as rapid and complete staining of entire specimens in 3D. We propose that the presented hESAM-Nbs can serve as novel blood vessel markers in academic research and can potentially improve 3D histopathological diagnostics of entire human tissue specimens, leading to improved treatment and superior patient outcomes.


Subject(s)
Single-Domain Antibodies , Endothelial Cells/metabolism , Humans , Imaging, Three-Dimensional/methods , Single-Domain Antibodies/metabolism , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...