Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Pak Med Assoc ; 71(3): 916-920, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34057948

ABSTRACT

OBJECTIVE: Current study was designed to isolate the pathogens from burn wounds and determine the antibiogram of these isolates. METHODS: A total of 85 samples were collected from burn patients with the history of different weeks of hospitalization in various public and private hospitals of Faisalabad during September 2017-July 2019 and shifted to Department of Microbiology, Government College University, Faisalabad for further processing. Isolation and identification of the pathogens was done through conventional microbiological procedures. Disc diffusion method was used for the determination of antibacterial and antifungal activity. RESULTS: A total of 40(91%) samples were found positive for the presence of bacterial or fungal pathogens. Commonly isolated pathogens were Staphylococcus aureus 15 (21.4%), Pseudomonas aeruginosa 15 (21.4%), Bacillus subtilis 11(15.7%), Escherichia coli 10(14.2%), Candida albicans 8(11.4%), Aspergillus flavus 6(8.5%) and Salmonella Typhi 5(7.1%). Highest resistance was found against S. aureus and P. aeruginosa. Cefotaxime was the least effective antibiotic, while Gentamicin and Amphotericin-B were the mosteffective antimicrobial drugs against bacterial and fungal pathogens, respectively. CONCLUSIONS: Taking together it was concluded that most isolated pathogen was S. aureus and P. aeruginosa followed by B. subtilis, E. coli, C. albicans, A. flavus and S. typhi from burn wound in hospitalized patients. Anti-biogram studies showed S. aureus and P. aeruginosa were the most resistant pathogens whereas S. typhi, C. albicans and A. flavus were susceptible to various commonly used antibiotics. Cefotaxime was the least effective antibiotic, while Gentamicin and Amphotericin-B were the most effective antimicrobial drugs against bacterial and fungal pathogens, respectively. It is suggested that alternate anti-microbial agents should be investigated to control the infections.


Subject(s)
Anti-Infective Agents , Burns , Bacteria , Escherichia coli , Humans , Staphylococcus aureus
2.
Biol Trace Elem Res ; 199(9): 3457-3469, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33125667

ABSTRACT

Cadmium is a heavy metal and a non-biodegradable environmental contaminant, and its omnipresence ensures its recurrent exposure to humans and animals. Its intake by chicks leads to fatal implications. Cadmium chloride (CdCl2) because of its bio-accumulative nature is an emerging threat to the poultry industry as well as to the humans which consumes these cadmium-intoxicated chickens. In the current study, the target was to elucidate the toxic effects of CdCl2on body weight, hematological, and biochemical parameters as well as its bioaccumulation in different organs of broiler chicks. Various concentrations of CdCl2 (0, 12, 24, 38, and 48 mg/kg body weight) were administered orally to five groups (A, B, C, D, and E) of broiler chicks, respectively. The biometric screening of the exposed birds was carried out by hematological parameters such as packed cell volume (PCV), total erythrocyte count (TEC), mean corpuscular hemoglobin concentration (MCHC), total protein, white blood cells (WBC), and hemoglobin (Hb), as well as biochemical parameters superoxide dismutase (SOD), low-density lipoprotein (LDL), glutathione peroxidase (GPx), and high-density lipoprotein (HDL) with commercially available kits. Metal accumulation in different organs was detected using atomic absorption spectrophotometer. The compound exposure produced a varied impact on broiler birds. Hematological parameters showed a significant decrease except for WBC. Biochemical parameters also decreased significantly in a dose-dependent manner. However, it was revealed that the body weight of chickens was not affected considerably after CdCl2 exposure. A direct relationship was detected between the accumulation of metal within tissues (lungs, heart, and flesh) and exposure frequency. It can be deduced that an increase in Cd deposition in tissues may lead to an alteration in hematological-biochemical markers which may significantly contribute to systemic toxicity in broilers.


Subject(s)
Cadmium Poisoning , Cadmium , Animals , Cadmium/toxicity , Cadmium Chloride/toxicity , Chickens , Chlorides , Humans
3.
Environ Sci Pollut Res Int ; 27(23): 29266-29279, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32436095

ABSTRACT

Mercury and cadmium are highly dangerous metals that can lead to disastrous effects in animals and humans. The aim of the current research was to elucidate the poisonous effects of mercuric chloride and cadmium chloride individually and in combination on biochemical profiles of plasma and their accumulation in heart. The therapeutic effect of vitamin C against these metals in rabbits was also studied. Mercuric chloride (1.2 µg/g), cadmium chloride (1.5 µg/g), and vitamin C (150 µg/g of body weight) were orally given to treatment groups of the rabbits (1-control; 2-vitamin; 3-CdCl2; 4-HgCl2; 5-vitamin + CdCl2; 6-vitamin + HgCl2; 7-CdCl2 + HgCl2, and 8-vitamin + CdCl2 + HgCl2. After the biometric determination of all intoxicated rabbits, biochemical parameters, viz low-density lipoproteins (LDL), high-density lipoproteins (HDL), cholesterol, creatine kinase, and troponin T (TnT) were analyzed using available kits. Levels of cholesterol (0.7 ± 0.1 mmol/l), creatine kinase (2985.2 ± 11 IU/L), LDL (20.35 ± 1.31 mg/dl), and troponin T (1.22 ± 0.03 µg/l) were significantly (P < 0.05) increased. HDL (84.78 ± 4.30 mg/dl) was significantly (P < 0.05) decreased, while supplementation of vitamin C decreased the adverse effects of CdCl2 and HgCl2 on biochemical parameters in all metal-exposed groups. A similar trend was also seen in rabbits treated with CdCl2 + vitamin and vitamin + CdCl2 + HgCl2. Accumulation of Cd and Hg was higher in heart tissues. This study, therefore, provides awareness on the cardiac toxicity of mercury and cadmium chlorides in the rabbits and the possible protective role of vitamin C against the perturbations induced by metals.


Subject(s)
Cadmium , Mercury , Animals , Ascorbic Acid , Cadmium Chloride , Cardiotoxicity , Humans , Mercuric Chloride , Rabbits , Vitamins
4.
Environ Sci Pollut Res Int ; 27(13): 15149-15164, 2020 May.
Article in English | MEDLINE | ID: mdl-32072413

ABSTRACT

Lead is one of the utmost contaminated and dangerous heavy metals. This toxicant ultimately enters into the human body through the food chain and accumulated in the body because the animal/human body has not an appropriate mechanism to excrete it from the body. The main objective of the present research was to assess the toxicological effects of lead on body weights, biochemical, and hematological parameters of chickens and also to measure its bioaccumulation in the brain. Lead acetate was administrated orally at doses of 0, 71, 142, 213, and 284 mg/kg of body weight of chicken for groups A, B, C, D, and E, respectively. Along with determination of biometry of all experimental chicks, hematological [hemoglobin (Hb), packed cell volume (PCV), mean corpuscular hemoglobin concentration (MCHC), total erythrocyte count (TEC), white blood cells (WBCs), leukocyte differential count (LDC)] and biochemical [low density lipoprotein (LDL), total protein, high-density lipoprotein (HDL), and alanine aminotransferase (ALT)] parameters were measured. The present study showed that the bodyweight of chickens was not affected significantly by lead acetate exposure. The levels of MCHC, PCV, TEC, Hb, LDL, HDL, and total protein were found to be significantly decreased while WBC, LDC, and ALT profile were enhanced due to administration of lead acetate. Bioaccumulation of lead acetate was found to be higher in the brain. We conclude that the chronic administration of lead acetate affected the blood and biochemical profile of exposed chicken. These effects might be due to the accumulation of the chemical in certain vital organ(s). However, further studies in the future are suggested to refine such findings.


Subject(s)
Chickens , Lead , Acetates , Animals , Erythrocyte Indices , Hematocrit
5.
Environ Sci Pollut Res Int ; 26(16): 16727-16741, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30989610

ABSTRACT

Cadmium and mercury are non-biodegradable toxic metals that may cause many detrimental effects to the thyroid gland and blood. Vitamin C has been found to be a significant chain-breaking antioxidant and enzyme co-factor against metal toxicity and thus make them less available for animals. The current study was performed to find the effect of individual metals (cadmium and mercury), their co-administration, and the ameliorative effects of vitamin C on some of the parameters that indicate oxidative stress and thyroid dysfunction. Cadmium chloride (1.5 mg/kg), mercuric chloride (1.2 mg/kg), and vitamin C (150 mg/kg of body weight) were orally administered to eight treatment groups of the rabbits (1. control; 2. Vit C; 3. CdCl2; 4. HgCl2; 5. Vit C + CdCl2; 6. Vit C + HgCl2; 7. CdCl2 + HgCl2, and 8. Vit C + CdCl2 + HgCl2). After the biometric measurements of all experimental rabbits, biochemical parameters viz. triidothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH), and triglycerides were measured using commercially available kits. The results exhibited significant decline (p < 0.05) in mean hemoglobin, corpuscular hemoglobin, packed cell volume, T3 (0.4 ± 0.0 ng/ml), and T4 (26.3 ± 1.6 ng/ml) concentration. While, TSH (0.23 ± 0.01 nmol/l) and triglyceride (4.42 ± 0.18 nmol/l) were significantly (p < 0.05) increased but chemo-treatment with Vit C reduces the effects of Cd, Hg, and their co-administration but not regained the values similar to those of controls. This indicates that Vit C had a shielding effect on the possible metal toxicity. The Cd and Hg also found to accumulate in vital organs when measured by atomic absorption spectrophotometer. The metal concentration trend was observed as follows: kidney > liver > heart > lungs. It was concluded that Cd and Hg are toxic and tended to bioaccumulate in different organs and their toxic action can be subdued by vitamin C in biological systems.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Cadmium/toxicity , Mercury/toxicity , Thyroid Gland/drug effects , Thyroid Hormones/blood , Thyrotropin/blood , Animals , Body Weight/drug effects , Cadmium/metabolism , Heavy Metal Poisoning , Hemoglobins/analysis , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Mercury/metabolism , Oxidative Stress/drug effects , Rabbits , Thyroid Gland/metabolism
6.
Environ Sci Pollut Res Int ; 26(14): 14087-14096, 2019 May.
Article in English | MEDLINE | ID: mdl-30852747

ABSTRACT

The liver is one of the vital and sensitive organs which are usually exposed against the toxicity of mercury (Hg) and cadmium (Cd). The main objective of the current study was to evaluate the potential toxicological effects of both Cd and Hg as individual and combined. Hepatotoxicity was evaluated by monitoring the biochemical parameters of the liver and their accumulation in the liver as well as therapeutic role of vitamin C in said toxicity in rabbits (Oryctolagus cuniculus). In this research, cadmium chloride (1.5 mg/kg), mercuric chloride (1.2 mg/kg), and vitamin C (150 mg/kg of body weight) were orally administered to treatment groups of the rabbits for 28 alternative days. Various biochemical parameters of the liver such as lactate dehydrogenase (LDH), aspartate aminotransferase (ASAT), bilirubin, alanine aminotransferase (ALAT), total protein, and gamma glutamyl transferase (GGT) were estimated using blood samples. Some biochemical parameters like ASAT, ALAT, LDH, GGT, and bilirubin were significantly elevated (P ≤ 0.001) in individual Cd and Hg treatment groups, while the level of total protein was found to be significantly declined. The effects of Cd and Hg in the presence of vitamin C on these biochemical parameters were low as compared to metals-treated groups. Similar results were found when rabbits were treated with co-administration of both metals and vitamin C. Accumulation of Cd and Hg found to be higher in the liver. However, chemoprevention and chemotreatment with vitamin C significantly (P ≤ 0.01) minimized the toxicological effects of both metals but not regained the accumulation similar to that of the control group. The findings of this study provide awareness on accumulation of metals in the liver in rabbits and their toxicity tested through biochemical parameters as well as the therapeutic role of vitamin C in such alterations.


Subject(s)
Ascorbic Acid/pharmacology , Cadmium/toxicity , Chemical and Drug Induced Liver Injury/prevention & control , Mercury/toxicity , Protective Agents/pharmacology , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Cadmium Chloride/toxicity , Chemical and Drug Induced Liver Injury/etiology , Female , L-Lactate Dehydrogenase/metabolism , Liver/drug effects , Liver/metabolism , Male , Mercuric Chloride/toxicity , Rabbits , gamma-Glutamyltransferase/metabolism
7.
Environ Sci Pollut Res Int ; 26(4): 3909-3920, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30547340

ABSTRACT

Cadmium and mercury are among the most toxic and dangerous environmental pollutants that may cause fatal implications. Vitamin C is an important chain-breaking antioxidant and enzyme co-factor against heavy metals. The objective of the present study was to evaluate the toxicological effects of cadmium chloride, mercuric chloride, and their co-administration on biochemical parameters of blood serum and metal bioaccumulation in kidneys and also to elucidate the protective effect of vitamin C in rabbits against these metals. In the current research, cadmium chloride (1.5 mg/kg), mercuric chloride(1.2 mg/kg), and vitamin C (150 mg/kg of body weight) were orally administered to eight treatment groups of the rabbits (1, control; 2, vitamin; 3, CdCl2; 4, HgCl2; 5, vitamin + CdCl2; 6, vitamin + HgCl2; 7, CdCl2 + HgCl2, and 8, vitamin + CdCl2 + HgCl2). After the biometric measurements of all experimental rabbits, biochemical parameters viz. creatinine, cystatin C, uric acid, and alkaline phosphatase (ALP) and metal bioaccumulation were determined using commercially available kits and atomic absorption spectrophotometer, respectively. The levels of creatinine (28.3 ± 1.1 µmol/l), cystatin C (1932.5 ± 38.5 ηg/ml), uric acid (4.8 ± 0.1 mg/day), and ALP (51.6 ± 1.1 IU/l) were significantly (P < 0.05) increased due to administration of mercuric chloride but in the presence of vitamin C, the effects of mercuric chloride on creatinine (21.9 ± 1.4 µmol/l), cystatin C (1676.2 ± 42.2 ηg/ml), uric acid (3.9 ± 0.1 mg/day), and ALP (43.3 ± 0.8 IU/l) were less as compared to metal-exposed specimens. Similar results were found in rabbits treated with cadmium chloride and vitamin C and also with co-administration of both metals and vitamin C. Because of the bio-accumulative nature of cadmium chloride and mercuric chloride, these metals were accumulated in kidneys of rabbits, which might lead to deleterious effects. The results of the present study provide an insight into the toxicity of the cadmium chloride, mercuric chloride, and/or their combination on biochemical parameters as well as kidneys of the rabbits and the ameliorating potential of vitamin C against these metals is also evaluated.


Subject(s)
Ascorbic Acid/pharmacology , Cadmium Chloride/toxicity , Kidney/drug effects , Mercuric Chloride/toxicity , Administration, Oral , Alkaline Phosphatase/blood , Animals , Antioxidants/pharmacology , Cadmium/pharmacokinetics , Cadmium/toxicity , Cadmium Chloride/administration & dosage , Creatinine/blood , Cystatin C/blood , Environmental Pollutants/pharmacokinetics , Environmental Pollutants/toxicity , Kidney/metabolism , Mercuric Chloride/administration & dosage , Mercury/pharmacokinetics , Mercury/toxicity , Protective Agents/pharmacology , Rabbits , Uric Acid/blood
8.
Aquat Toxicol ; 163: 148-57, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25897689

ABSTRACT

Perfluorooctanoic acid (PFOA) is a long-chain perfluorinated chemical that has been shown to be non-degradable and persistent in the environment. Laboratory studies on bioconcentration and compound-specific tissue distribution in fish can be valuable for prediction of the persistence and environmental effects of the chemicals. In the present study male and female zebrafish (Danio rerio) were continuously exposed to 10µg/L of radiolabeled perfluorooctanoic acid ((14)C-PFOA) for 40 days, after which the exposed fish were transferred to fresh clean water for another 80 days wash-out period. At defined periodic intervals during the uptake and wash-out, fish were sampled for liquid scintillation counting and whole body autoradiography to profile the bioconcentration and tissue distribution of PFOA. The steady-state concentration of (14)C-PFOA in the zebrafish was reached within 20-30 days of exposure. The concentration-time course of (14)C-PFOA displayed a bi-exponential decline during washout, with a terminal half-life of approximately 13-14 days. At steady-state the bioconcentration of (14)C-PFOA into whole-body fish was approximately 20-30 times greater than that of the exposure concentration, with no differences between females and males. The bioconcentration factors for liver and intestine were approximately 100-fold of the exposure medium, while in brain, ovary and gall bladder the accumulation factors were in the range 15-20. Whole-body autoradiograms confirmed the highest labeling of PFOA in bile and intestines, which implies enterohepatic circulation of PFOA. The (14)C-PFOA was also observed in maturing vitellogenic oocytes, suggesting chemical accumulation via yolk proteins into oocytes with plausible risk for adverse effects on early embryonic development and offspring health. The bioconcentration at several (14)C-PFOA exposure concentrations were also investigated (0.3-30µg/L). This showed that bioconcentration increased linearly with tank exposure in the present in vivo model under steady-state conditions. From this model tissue concentrations of PFOA can be predicted when the external exposure level is known. The present study has generated experimental data on PFOA kinetics in zebrafish that can be valuable for aquatic environmental risk assessment.


Subject(s)
Caprylates/metabolism , Fluorocarbons/metabolism , Water Pollutants, Chemical/metabolism , Zebrafish/metabolism , Animals , Autoradiography , Bile/metabolism , Caprylates/toxicity , Carbon Radioisotopes/chemistry , Embryonic Development/drug effects , Female , Fluorocarbons/toxicity , Half-Life , Intestinal Mucosa/metabolism , Kinetics , Liver/metabolism , Male , Time Factors , Tissue Distribution , Water Pollutants, Chemical/toxicity
9.
PLoS One ; 9(4): e94227, 2014.
Article in English | MEDLINE | ID: mdl-24740186

ABSTRACT

Perfluorooctane sulfonate (PFOS) is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxic effects. The exposure to PFOS has been associated with higher impulsivity and increased ADHD prevalence. We investigated the effects of developmental exposure to PFOS in zebrafish larvae, focusing on the modulation of activity by the dopaminergic system. We exposed zebrafish embryos to 0.1 or 1 mg/L PFOS (0.186 or 1.858 µM, respectively) and assessed swimming activity at 6 dpf. We analyzed the structure of spontaneous activity, the hyperactivity and the habituation during a brief dark period (visual motor response), and the vibrational startle response. The findings in zebrafish larvae were compared with historical data from 3 months old male mice exposed to 0.3 or 3 mg/kg/day PFOS throughout gestation. Finally, we investigated the effects of dexamfetamine on the alterations in spontaneous activity and startle response in zebrafish larvae. We found that zebrafish larvae exposed to 0.1 mg/L PFOS habituate faster than controls during a dark pulse, while the larvae exposed to 1 mg/L PFOS display a disorganized pattern of spontaneous activity and persistent hyperactivity. Similarly, mice exposed to 0.3 mg/kg/day PFOS habituated faster than controls to a new environment, while mice exposed to 3 mg/kg/day PFOS displayed more intense and disorganized spontaneous activity. Dexamfetamine partly corrected the hyperactive phenotype in zebrafish larvae. In conclusion, developmental exposure to PFOS in zebrafish induces spontaneous hyperactivity mediated by a dopaminergic deficit, which can be partially reversed by dexamfetamine in zebrafish larvae.


Subject(s)
Alkanesulfonic Acids/toxicity , Dextroamphetamine/pharmacology , Fluorocarbons/toxicity , Zebrafish/physiology , Akathisia, Drug-Induced , Alkanesulfonic Acids/metabolism , Animals , Environmental Exposure , Fluorocarbons/metabolism , Larva/drug effects , Swimming
10.
Aquat Toxicol ; 144-145: 332-40, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24215719

ABSTRACT

Perfluoroalkyl acids (PFAAs) are persistent organic contaminants that have been detected in wildlife, humans and the environment. Studies have shown that the toxicity of PFAAs is determined by the carbon chain length as well as the attached functional group. The locomotor activity of zebrafish larvae has become widely used for evaluation of chemicals with neurotoxic properties. In the present study the behavioral effects of seven structurally different PFAAs (i.e. TFAA, PFBA, PFOA, PFNA, PFDA, PFBS and PFOS) were evaluated in zebrafish larvae. Exposure to high concentrations of TFAA, PFNA, PFBS and PFOS resulted in distinct changes in behavioral patterns. Based on redundancy analysis, our results demonstrate three main factors affecting zebrafish larval locomotor behavior. The strongest effect on behavior was determined by the carbon chain length and the attached functional group. PFAAs with longer carbon chain length as well as PFAAs with attached sulfonic groups showed larger potential to affect locomotor behavior in zebrafish larvae. Also the concentration of the PFAAs determined the behavior responses. The results of the present study are in agreement with previous studies showing correlations between the chemical structure of PFAAs and the toxicological effects.


Subject(s)
Fluorocarbons/toxicity , Motor Activity/drug effects , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , Animals , Larva/drug effects , Multivariate Analysis
11.
Environ Toxicol Pharmacol ; 36(2): 423-426, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23770452

ABSTRACT

The toxicity of individual perfluoroalkyl acids (PFAAs) has been suggested to be determined by the carbon chain length as well as the functional group attached. We tested seven different PFAAs including both sulfonic and carboxylic PFAAs with different chain length to evaluate the developmental toxicity in zebrafish embryos. Generally, the acute toxicity of PFAAs is relatively low to zebrafish embryos. The EC50 values ranged from 1.5 to 2200mg/L. We observed a relationship between higher toxicity with longer carbon chain. In addition, we also observed a higher toxicity for sulfonic PFAAs than for carboxylic PFAAs.


Subject(s)
Carboxylic Acids/toxicity , Fluorocarbons/toxicity , Sulfonic Acids/toxicity , Animals , Carboxylic Acids/chemistry , Dose-Response Relationship, Drug , Embryo, Nonmammalian/drug effects , Fluorocarbons/chemistry , Molecular Structure , Structure-Activity Relationship , Sulfonic Acids/chemistry , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...