Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 176(3): e14324, 2024.
Article in English | MEDLINE | ID: mdl-38705866

ABSTRACT

Broomrape (Orobanche cumana) negatively affects sunflower, causing severe yield losses, and thus, there is a need to control O. cumana infestation. Brassinosteroids (BRs) play key roles in plant growth and provide resilience to weed infection. This study aims to evaluate the mechanisms by which BRs ameliorate O. cumana infection in sunflower (Helianthus annuus). Seeds were pretreated with BRs (1, 10, and 100 nM) and O. cumana inoculation for 4 weeks under soil conditions. O. cumana infection significantly reduced plant growth traits, photosynthesis, endogenous BRs and regulated the plant defence (POX, GST), BRs signalling (BAK1, BSK1 to BSK4) and synthesis (BRI1, BR6OX2) genes. O. cumana also elevated the levels of malondialdehyde (MDA), hydroxyl radical (OH-), hydrogen peroxide (H2O2) and superoxide (O2 •-) in leaves/roots by 77/112, 63/103, 56/97 and 54/89%, as well as caused ultrastructural cellular damages in both leaves and roots. In response, plants activated a few enzymes, superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione but were unable to stimulate the activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes. The addition of BRs (especially at 10 nM) notably recovered the ultrastructural cellular damages, lowered the production of oxidative stress, activated the key enzymatic antioxidants and induced the phenolic and lignin contents. The downregulation in the particular genes by BRs is attributed to the increased resilience of sunflower via a susceptible reaction. In a nutshell, BRs notably enhanced the sunflower resistance to O. cumana infection by escalating the plant immunity responses, inducing systemic acquired resistance, reducing oxidative or cellular damages, and modulating the expression of BR synthesis or signalling genes.


Subject(s)
Brassinosteroids , Helianthus , Orobanche , Seeds , Helianthus/drug effects , Helianthus/immunology , Helianthus/physiology , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Orobanche/physiology , Orobanche/drug effects , Seeds/drug effects , Seeds/immunology , Plant Weeds/drug effects , Plant Weeds/physiology , Plant Diseases/parasitology , Plant Diseases/immunology , Plant Immunity/drug effects , Gene Expression Regulation, Plant/drug effects , Photosynthesis/drug effects , Plant Roots/immunology , Plant Roots/drug effects , Hydrogen Peroxide/metabolism , Plant Leaves/drug effects , Plant Leaves/immunology , Plant Proteins/metabolism , Plant Proteins/genetics , Malondialdehyde/metabolism
3.
Environ Sci Pollut Res Int ; 31(8): 12446-12466, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38231326

ABSTRACT

Magnesium oxide nanoparticles (MgO NPs) have great potential to enhance the crop productivity and sustainability of agriculture. Still, a thorough understanding is lacking about its essentiality or toxicity and precise dose for the safe cultivation of oilseed crops. Thus, we assessed the dual effects of MgO NPs (control, 5, 10, 20, 40, 80, and 200 mg/L) on the seed germination, growth performance, photosynthesis, total soluble protein, total carbohydrates, oxidative stress markers (hydrogen peroxide as H2O2 and superoxide anion as O2•‒), lipid peroxidation as MDA, and antioxidant defence machinery (SOD, CAT, APX, and GR activities, and GSH levels) of seven different oilseeds (Brassica napus L.) cultivars (ZY 758, ZD 649, ZD 635, ZD 619, GY 605, ZD 622, and ZD 630). Our findings revealed that low doses of MgO NPs (mainly at 10 mg/L) markedly boosted the seed germination, plant growth (shoot and root lengths) (15‒22%), and biomass (fresh and dry) (11‒19%) by improving the levels of photosynthetic pigments (14‒27%), net photosynthetic rate, stomatal conductance, photosynthetic efficiency (Fv/Fm), total soluble protein and total carbohydrates (16‒36%), antioxidant defence, and reducing the oxidative stress in B. napus tissues. Among all B. napus cultivars, these beneficial effects of MgO NPs were pronounced in ZD 635. ile, elevated levels of MgO NPs (particularly at 200 mg/L) induced oxidative stress, impaired antioxidant scavenging potential, photosynthetic inhibition, protein oxidation, and carbohydrate degradation and lead to inhibit the plant growth attributes. These inhibitory effects were more pronounced in ZD 622. Collectively, low-dose MgO NPs reinforced the Mg contents, protected the plant growth, photosynthesis, total soluble carbohydrates, enzyme activities, and minimized the oxidative stress. While, the excessive MgO NP levels impaired the above-reported traits. Overall, ZD 622 was highly susceptible to MgO NP toxicity and ZD 635 was found most tolerant to MgO NP toxicity.


Subject(s)
Brassica napus , Nanoparticles , Antioxidants/metabolism , Magnesium Oxide/pharmacology , Hydrogen Peroxide/metabolism , Oxidative Stress , Carbohydrates
4.
Environ Sci Pollut Res Int ; 31(6): 8985-8999, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183551

ABSTRACT

Drought and salt stress negatively influence the growth and development of various plant species. Thus, it is crucial to overcome these stresses for sustainable agricultural production and the global food chain. Therefore, the present study investigated the potential effects of exogenous silicon nanoparticles (SiNPs) on the physiological and biochemical parameters, and endogenous phytohormone contents of Elymus sibiricus under drought and salt stress. Drought stress was given as 45% water holding capacity, and salt stress was given as 120 mM NaCl. The seed priming was done with different SiNP concentrations: SiNP1 (50 mg L-1), SiNP2 (100 mg L-1), SiNP3 (150 mg L-1), SiNP4 (200 mg L-1), and SiNP5 (250 mg L-1). Both stresses imposed harmful impacts on the analyzed parameters of plants. However, SiNP5 increased the chlorophylls and osmolyte accumulation such as total proteins by 96% and 110% under drought and salt stress, respectively. The SiNP5 significantly decreased the oxidative damage and improved the activities of SOD, CAT, POD, and APX by 10%, 54%, 104%, and 211% under drought and 42%, 75%, 72%, and 215% under salt stress, respectively. The SiNPs at all concentrations considerably improved the level of different phytohormones to respond to drought and salt stress and increased the tolerance of Elymus plants. Moreover, SiNPs decreased the Na+ and increased K+ concentrations in Elymus suggesting the reduction in salt ion accumulation under salinity stress. Overall, exogenous application (seed priming/dipping) of SiNPs considerably enhanced the physio-biochemical and metabolic responses, resulting in an increased tolerance to drought and salt stresses. Therefore, this study could be used as a reference to further explore the impacts of SiNPs at molecular and genetic level to mitigate abiotic stresses in forages and related plant species.


Subject(s)
Antioxidants , Elymus , Antioxidants/metabolism , Plant Growth Regulators , Silicon/pharmacology , Elymus/metabolism , Droughts , Salt Stress , Stress, Physiological
5.
Sci Total Environ ; 912: 169420, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38128670

ABSTRACT

Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.


Subject(s)
Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Microplastics , Plastics , Polycyclic Aromatic Hydrocarbons/toxicity , Anti-Bacterial Agents , Metals, Heavy/toxicity , Crops, Agricultural
6.
Environ Sci Pollut Res Int ; 30(51): 110047-110068, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37807024

ABSTRACT

Due to sessile, plants are unable to avoid unfavorable environmental conditions which leads to inducing serious negative effects on plant growth, crop yield, and food safety. Instead, various approaches were employed to mitigate the phytotoxicity of these emerging contaminants from the soil-plant system. However, recent studies based on the exogenous application of ZnO NPs approve of their important positive potential for alleviating abiotic stress-induced phytotoxicity leads to ensuring global food security. In this review, we have comprehensively discussed the promising role of ZnO NPs as alone or in synergistic interactions with other plant growth regulators (PGRs) in the mitigation of various abiotic stresses, i.e., heavy metals (HMs), drought, salinity, cold and high temperatures from different crops. ZnO NPs have stress-alleviating effects by regulating various functionalities by improving plant growth and development. ZnO NPs are reported to improve plant growth by stimulating diverse alterations at morphological, physiological, biochemical, and ultrastructural levels under abiotic stress factors. We have explained the recent advances and pointed out research gaps in studies conducted in earlier years with future recommendations. Thus, in this review, we have also addressed the opportunities and challenges together with aims to uplift future studies toward effective applications of ZnO NPs in stress management.


Subject(s)
Nanoparticles , Zinc Oxide , Zinc , Zinc Oxide/chemistry , Nanoparticles/toxicity , Stress, Physiological , Crops, Agricultural
7.
Front Plant Sci ; 14: 1197781, 2023.
Article in English | MEDLINE | ID: mdl-37324688

ABSTRACT

The Brassica napus (B. napus) LOR (Lurp-One-Related) gene family is a little-known gene family characterized by a conserved LOR domain in the proteins. Limited research in Arabidopsis showed that LOR family members played important roles in Hyaloperonospora parasitica (Hpa) defense. Nevertheless, there is a paucity of research investigating the role of the LOR gene family towards their responses to abiotic stresses and hormone treatments. This study encompassed a comprehensive survey of 56 LOR genes in B. napus, which is a prominent oilseed crop that holds substantial economic significance in China, Europe, and North America. Additionally, the study evaluated the expression profiles of these genes in response to salinity and ABA stress. Phylogenetic analysis showed that 56 BnLORs could be divided into 3 subgroups (8 clades) with uneven distribution on 19 chromosomes. 37 out of 56 BnLOR members have experienced segmental duplication and 5 of them have undergone tandem repeats events with strong evidence of purifying selection. Cis-regulatory elements (CREs) analysis indicated that BnLORs involved in process such as light response, hormone response, low temperature response, heat stress response, and dehydration response. The expression pattern of BnLOR family members revealed tissue specificity. RNA-Seq and qRT-PCR were used to validate BnLOR gene expression under temperature, salinity and ABA stress, revealing that most BnLORs showed inducibility. This study enhanced our comprehension of the B. napus LOR gene family and could provide valuable information for identifying and selecting genes for stress resistant breeding.

8.
J Hazard Mater ; 458: 131906, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37364434

ABSTRACT

Plant yield is severely hampered by chromium (Cr) toxicity, affirming the urgent need to develop strategies to suppress its phyto-accumulation. Silicon dioxide nanoparticles (SiO2 NPs) have emerged as a provider of sustainable crop production and resistance to abiotic stress. But, the mechanisms by which seed-primed SiO2 NPs palliate Cr-accumulation and its toxic impacts in Brassica napus L. tissues remains poorly understood. To address this gap, present study examined the protective efficacy of seed priming with SiO2 NPs (400 mg/L) in relieving the Cr (200 µM) phytotoxicity mainly in B. napus seedlings. Results delineated that SiO2 NPs significantly declined the accumulation of Cr (38.7/35.9%), MDA (25.9/29.1%), H2O2 (27.04/36.9%) and O2• (30.02/34.7%) contents in leaves/roots, enhanced the nutrients acquisition, leading to improved photosynthetic performance and better plant growth. SiO2 NPs boosted the plant immunity by upregulating the transcripts of antioxidant (SOD, CAT, APX, GR) or defense-related genes (PAL, CAD, PPO, PAO and MT-1), GSH (assists Cr-vacuolar sequestration), and modifying the subcellular distribution (enhances Cr-proportion in cell wall), thereby confer tolerance to ultrastructural damages under Cr stress. Our first evidence to establish the Cr-detoxification by seed-primed SiO2 NPs in B. napus, indicated the potential of SiO2 NPs as stress-reducing agent for crops grown in Cr-contaminated areas.


Subject(s)
Brassica napus , Antioxidants/pharmacology , Chromium/toxicity , Hydrogen Peroxide , Oxidative Stress , Seeds/metabolism , Silicon Dioxide/pharmacology
9.
Ecotoxicol Environ Saf ; 252: 114624, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36758507

ABSTRACT

The excessive accumulation of cobalt (Co) in plant tissues severely impairs plant growth that ultimately reduces the yield. However, melatonin (MT) has been known to mediate the abiotic stress tolerance in plants. The present study aimed at investigating the protective mechanisms of exogenously applied MT (0, 50 and 100 µM) under Co (0, 100, 200 and 300 µM) stress by focusing on morpho-physiological, biochemical and cellular characterizations of Brassica napus plants. Cobalt (300 µM) alone treatment drastically inhibited the stomatal conductance, plant height (45%), leaf area (30%), free amino acid (139%), relative electrolyte leakage (109%), and total soluble sugars (71%), compared with the control. However, the exogenous supply of MT notably minimized the oxidative damage, lipid peroxidation and maintained the membrane integrity under Co-toxicity by restricting the overproduction of ROS (H2O2 and O2•), and MDA in leaves and roots. Melatonin significantly enhanced the activities of ROS-scavenging antioxidant enzymes, secondary metabolism-related phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), stress-responsive genes (heat shock protein as HSP-90, methyl transferase as MT) and regulated the Co-transporters, especially in roots. These findings indicated that an exogenous supply of MT improve the plant morphology, photosynthetic apparatus, osmotic adjustments, and antioxidant defense systems by enhancing the Co-detoxification in B. napus plants.


Subject(s)
Brassica napus , Melatonin , Antioxidants/pharmacology , Antioxidants/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism
10.
Funct Plant Biol ; 50(2): 121-135, 2023 02.
Article in English | MEDLINE | ID: mdl-35057906

ABSTRACT

Chromium (Cr) is a serious environmental contaminant that drastically limited the crop yields. Nitric oxide (NO) and spermine (Spm) portrayal significance in improving the plant tolerance against abiotic stresses. Therefore, we investigate the protective efficacy of seed priming with NO (100µM) and/or Spm (0.01mM) in minimising the Cr-induced toxic effects in rice (Oryza sativa L.) plants. Our outcomes revealed that Cr alone treatments (100µM) notably reduced the seed germination rate, plant growth, photosynthetic apparatus, nutrients uptake and antioxidant defence system, but extra generation of reactive oxygen species (ROS). Interestingly, the combine applications of NO and Spm significantly reversed the Cr-induced toxic effects by reducing the Cr-accumulation, maintaining the nutrient balance, improving the germination indices, levels of photosynthetic pigments (chl a by 24.6%, chl b by 36.3%, chl (a+b ) by 57.2% and carotenoids by 79.4%), PSII, photosynthesis gas exchange parameters and total soluble sugar (74.9%) by improving antioxidative enzyme activities. As a result, NO+Spm lowered the accumulation of oxidative markers (H2 O2 by 93.9/70.4%, O2 ˙- by 86.3/69.9% and MDA by 97.2/73.7% in leaves/roots), electrolyte leakage (71.4% in leaves) and improved the plant growth traits. Based on these findings, it can be concluded that NO triggers Spm to minimise the Cr-accumulation and its adverse effects on rice plants. Additionally, combined treatments (NO+Spm) were more effective in minimising the Cr-induced toxic effects in comparison to NO and Spm alone treatments. Thus, co-exposure of NO and Spm may be utilised to boost rice tolerance under Cr stress conditions.


Subject(s)
Oryza , Seedlings , Nitric Oxide/pharmacology , Spermine/pharmacology , Chromium/toxicity , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Seeds
11.
Microbiol Res ; 266: 127254, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36371871

ABSTRACT

The mechanisms underlie increased stress tolerance in plants of salinity stress in plants by arbuscular mycorrhizal fungi (AMF) are poorly understood, particularly the role of polyamine metabolism. The current study was conducted to investigate how inoculation with the AMF, Funneliformis constrictum, affects maize plant tolerance to salt stress. To this end, we investigated the changes in photosynthesis, redox status, primary metabolites (amino acids) and secondary metabolism (phenolic and polyamine metabolism). Control and inoculated maize plants were grown using different concentrations of diluted seawater (0%, 10%, 20% and 40%). Results revealed that treatment with 10% seawater had a beneficial effect on AMF and its host growth. However, irrigation with 20% and 40% significantly reduced plant growth and biomass. As seawater concentration increased, the plants' reliance on mycorrhizal fungi increased resulting in enhanced growth and photosynthetic pigments contents. Under higher seawater concentrations, inoculation with AMF reduced salinity induced oxidative stress and supported redox homeostasis by reducing H2O2 and MDA levels as well as increasing antioxidant-related enzymes activities (e.g., CAT, SOD, APX, GPX, POX, GR, and GSH). AMF inoculation increased amino acid contents in shoots and roots under control and stress conditions. Amino acids availability provides a route for polyamines biosynthesis, where AMF increased polyamines contents (Put, Spd, Spm, total Pas) and their metabolic enzymes associated (ADC, SAMDC, Spd synthase, and Spm synthase), particularly under 40% seawater irrigation. Consistently, the transcription of genes, involved in polyamine metabolism was also up regulated in salinity-stressed plants. AMF further increased the expression in genes involved in polyamine biosynthesis (ODC, SAMDC, SPDS2 and decreased expression of those in catabolic biosynthesis (ADC and PAO). Overall, inoculation with Funneliformis constrictum could be adopted as a practical strategy to alleviate salinity stress.


Subject(s)
Mycorrhizae , Zea mays , Zea mays/microbiology , Salinity , Hydrogen Peroxide/metabolism , Mycorrhizae/metabolism , Polyamines/metabolism , Amino Acids/metabolism
12.
Environ Pollut ; 316(Pt 2): 120639, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36372367

ABSTRACT

The pollution of nanoparticles (NPs) has linked with severe negative effects on crop productivity. Thus, effective strategies are needed to mitigate the phytotoxicity of NPs. The aim of present study was to evaluate the efficacy of exogenously applied melatonin (MT) in mitigating the toxic effects of copper oxide nanoparticles (CuO NPs) from maize seedlings. Therefore, we comprehensively investigated the inhibitory effects of MT against CuO NPs-induced toxicity on morpho-physiological, biochemical and ultrastructural levels in maize. Our results show that CuO NPs (300 mg L-1) exposure displayed significantly reduction in all plant growth traits and induced toxicity in maize. Furthermore, 50 µM MT provided maximum plant tolerance against CuO NPs-induced phytotoxicity. It was noticed that MT improved plant growth, biomass, photochemical efficiency (Fv/Fm), chlorophyll contents (Chl a and Chl b), SPAD values and gas exchange attributes (stomatal conductance, net photosynthetic rate, intercellular CO2 concentration and transpiration rate) under CuO NPs stress. In addition, MT enhanced the antioxidant defense system and conferred protection to ultrastructural (mainly chloroplast, thylakoids membrane and plastoglobuli) damages and stomatal closure in maize plants subjected to CuO NPs stress. Together, it can be stated that the exogenous supply of MT improves the resilience of maize plants against the CuO NPs-induced phytotoxicity. Our current findings can be useful for the enhancement of plant growth and yield attributes in CuO NPs-contaminated soils. The reported information can provide insight into the MT pathways that can be used to improve crop stress tolerance in a challenging environment.


Subject(s)
Melatonin , Metal Nanoparticles , Nanoparticles , Copper/chemistry , Seedlings , Antioxidants/pharmacology , Antioxidants/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Zea mays/metabolism , Nanoparticles/toxicity , Oxides/pharmacology , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry
13.
Environ Sci Pollut Res Int ; 30(10): 26137-26149, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36350451

ABSTRACT

The enormous use of metal-based nanoparticles (NPs) in different sectors may result in enhanced accumulation in agricultural soil, which could impose negative effects on crop productivity. Hence, strategies are needed to explore the mechanisms of copper oxide nanoparticle (CuO NP)-induced toxicity in crops. The present study aimed to investigate the involvement of ethylene in CuO NP-induced toxicity in rice seedlings. Here, our results indicate that 450 mg L-1 of CuO NPs induced toxic effects in rice seedlings. Thus, it was evidenced by the reduced plant biomass accumulation, enhanced oxidative stress indicators, and cellular ultrastructural damages. More importantly, the exogenous supply of ethylene biosynthesis and signaling antagonists cobalt (Co) and silver (Ag) respectively provided tolerance and improved the defense system of rice seedlings against CuO NP toxicity. The ethylene antagonists could significantly reduce the extent of ultrastructural and stomatal damage by controlling the ROS accumulation in rice seedlings under CuO NP stress. Furthermore, Co and Ag augmented the antioxidant defense system against CuO NP-induced toxicity. Contrary to that, all oxidative damage attributes were further enhanced exogenous application of ethylene biosynthesis precursor [1-aminocyclopropane-1-carboxylic acid (ACC)] in the presence of CuO NPs. In addition, ACC could increase the CuO NP-induced stomatal and ultrastructural damages by reducing the ROS-scavenging ability in rice seedlings. Taken together, these results indicate the involvement of ethylene in CuO NP-induced toxicity in rice seedlings.


Subject(s)
Metal Nanoparticles , Nanoparticles , Oryza , Seedlings , Copper/chemistry , Reactive Oxygen Species/pharmacology , Nanoparticles/toxicity , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Ethylenes , Oxides/pharmacology
14.
Environ Pollut ; 315: 120390, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36244495

ABSTRACT

Nanoparticles have emerged as cutting-edge technology for the improvement of crops yield and safe cultivation of agricultural plants, especially in peripheral areas impaired with toxic heavy metals including chromium (Cr). The uncontrolled release of Cr mainly from anthropogenic factors is substantially polluting the surrounding environment, thereby extensively accumulated in soil-plant system. The excessive Cr-accretion in plant tissues disturbed the morph-physiological, biochemical, cellular, metabolic and molecular processes, and impaired the plants functionality. Therefore, it is obligatory to restrict the accumulation and toxic effects of Cr in plant organs. Recent studies on metallic nanoparticles (MNPs) such as iron oxide, silicon dioxide, copper oxide and zinc oxide have approved their efficacy as potent pool to curb the Cr-induced phytotoxicities and improved the plant tolerance. MNPs attenuated the bioaccumulation and phytotoxicity of Cr by utilizing key mechanisms such as improved photosynthetic machinery, regulation of cellular metabolites, greater chelation capacity to bind with Cr, release of corresponding metallic ions, upsurge in the uptake of essential nutrients, activation of antioxidants (enzymatic and non-enzymatic), reduction in oxidative stress, and cellular injuries, thus improvement in plant growth performances. We have briefly discussed the current knowledge and research gaps in existing literature along with possible recommendations for future research. Overall, Cr-detoxification by MNPs may depends upon the target plant species, Cr speciation, plant growth stages (seedling, vegetative and ripening etc.), treatment methods (foliar spray, seed priming and nutrient solution etc.), type, size, dose and coating of applied MNPs, and conditions (hydroponic and soil environment etc.). This review would help plant scientists to develop MNPs based strategies such as nano-fertilizers to alleviate the Cr-accumulation and its toxic impacts. This may leads to safe and healthy food production. The review outcomes can provide new horizons for research in the applications of MNPs for the sustainable agriculture.


Subject(s)
Metal Nanoparticles , Soil Pollutants , Chromium/toxicity , Chromium/analysis , Soil Pollutants/analysis , Soil/chemistry , Antioxidants/metabolism , Oxidative Stress , Crops, Agricultural/metabolism , Metal Nanoparticles/toxicity
15.
Front Plant Sci ; 13: 886862, 2022.
Article in English | MEDLINE | ID: mdl-36061773

ABSTRACT

Salinity is a global conundrum that negatively affects various biometrics of agricultural crops. Jasmonic acid (JA) is a phytohormone that reinforces multilayered defense strategies against abiotic stress, including salinity. This study investigated the effect of JA (60 µM) on two wheat cultivars, namely ZM9 and YM25, exposed to NaCl (14.50 dSm-1) during two consecutive growing seasons. Morphologically, plants primed with JA enhanced the vegetative growth and yield components. The improvement of growth by JA priming is associated with increased photosynthetic pigments, stomatal conductance, intercellular CO2, maximal photosystem II efficiency, and transpiration rate of the stressed plants. Furthermore, wheat cultivars primed with JA showed a reduction in the swelling of the chloroplast, recovery of the disintegrated thylakoids grana, and increased plastoglobuli numbers compared to saline-treated plants. JA prevented dehydration of leaves by increasing relative water content and water use efficiency via reducing water and osmotic potential using proline as an osmoticum. There was a reduction in sodium (Na+) and increased potassium (K+) contents, indicating a significant role of JA priming in ionic homeostasis, which was associated with induction of the transporters, viz., SOS1, NHX2, and HVP1. Exogenously applied JA mitigated the inhibitory effect of salt stress in plants by increasing the endogenous levels of cytokinins and indole acetic acid, and reducing the abscisic acid (ABA) contents. In addition, the oxidative stress caused by increasing hydrogen peroxide in salt-stressed plants was restrained by JA, which was associated with increased α-tocopherol, phenolics, and flavonoids levels and triggered the activities of superoxide dismutase and ascorbate peroxidase activity. This increase in phenolics and flavonoids could be explained by the induction of phenylalanine ammonia-lyase activity. The results suggest that JA plays a key role at the morphological, biochemical, and genetic levels of stressed and non-stressed wheat plants which is reflected in yield attributes. Hierarchical cluster analysis and principal component analyses showed that salt sensitivity was associated with the increments of Na+, hydrogen peroxide, and ABA contents. The regulatory role of JA under salinity stress was interlinked with increased JA level which consequentially improved ion transporting, osmoregulation, and antioxidant defense.

16.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36139792

ABSTRACT

Chromium (Cr) is an important environmental constraint effecting crop productivity. Spermine (SPM) is a polyamine compound regulating plant responses to abiotic stresses. However, SPM-mediated tolerance mechanisms against Cr stress are less commonly explored in plants. Thus, current research was conducted to explore the protective mechanisms of SPM (0.01 mM) against Cr (100 µM) toxicity in two rice cultivars, CY927 (sensitive) and YLY689 (tolerant) at the seedling stage. Our results revealed that, alone, Cr exposure significantly reduced seed germination, biomass and photosynthetic related parameters, caused nutrient and hormonal imbalance, desynchronized antioxidant enzymes, and triggered oxidative damage by over-accretion of reactive oxygen species (ROS), malondialdehyde (MDA) and electrolyte leakage in both rice varieties, with greater impairments in CY927 than YLY689. However, seed priming with SPM notably improved or reversed the above-mentioned parameters, especially in YLY689. Besides, SPM stimulated the stress-responsive genes of endogenous phytohormones, especially salicylic acid (SA), as confirmed by the pronounced transcript levels of SA-related genes (OsPR1, OsPR2 and OsNPR1). Our findings specified that SPM enhanced rice tolerance against Cr toxicity via decreasing accumulation of Cr and markers of oxidative damage (H2O2, O2•- and MDA), improving antioxidant defense enzymes, photosynthetic apparatus, nutrients and phytohormone balance.

17.
Front Plant Sci ; 13: 936696, 2022.
Article in English | MEDLINE | ID: mdl-35968110

ABSTRACT

Purple-stem Brassica napus (B. napus) is a phenotype with unique color because of its high anthocyanins content. Anthocyanins are naturally occurring plant pigments that have antioxidants activity and play important role in plant defense against abiotic and biotic stresses. In the present study, drought induced effects on plants were investigated in hydroponically grown seedlings of green stem (GS) and purple stem (PS) genotypes of B. napus. The results of this study showed that the major function of anthocyanins accumulation during drought was to enhance the antioxidant capability and stress tolerance in B. napus plants. Our results showed that drought significantly inhibited the plant growth in terms of decreased biomass accumulation in both genotypes, although marked decline was observed in GS genotype. The reduction in photosynthetic attributes was more noticeable in the GS genotype, whereas the PS genotype showed better performance under drought stress. Under stressful conditions, both the genotype showed excessive accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as higher levels of antioxidant enzymes activities. Under drought conditions, the GS genotype showed apparent damages on chloroplast deformation like in thylakoid membrane and grana structural distortion and fewer starch grains and bigger plastoglobuli. Moreover, during drought stress, the PS genotype exhibited maximum expression levels of anthocyanins biosynthesis genes and antioxidant enzymes accompanied by higher stress tolerance relative to GS genotype. Based on these findings, it can be concluded that GS genotype found more sensitive to drought stress than the PS genotype. Furthermore this research paper also provides practical guidance for plant biologists who are developing stress-tolerant crops by using anthocyanin biosynthesis or regulatory genes.

18.
J Hazard Mater ; 438: 129498, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35803196

ABSTRACT

Heavy metal contamination is a serious environmental issue that jeopardize global food production and safety, while cadmium (Cd) is a most widely distributed heavy metal in the earth's crust and highly toxic to organisms. The available strategies of fighting against heavy metal contamination are not commonly used due to their ineffectiveness and time- or cost-consuming. Recently, nanotechnology-based ameliorative strategies have emerged as a potential alternative to physic-chemical techniques. In the current study, we used two barley genotypes, LJZ (Cd sensitive) and Pu-9 (Cd tolerant), to study the effects of exogenous calcium oxide nanoparticles (CaO NPs) in alleviating Cd stress. Cd exposure to barley plants led to significant reduction in morph-physiological, nutrient contents, photosynthetic rate, and large accumulation of Cd in plant tissues. However, CaO NPs application significantly increased plant biomass, activities of anti-oxidative enzymes (i.e., ascorbate peroxidase, catalase, superoxide dismutase, and glutathione reductase) and the content of non-enzymatic antioxidants (ascorbate and glutathione) accompanied by great reduction of malondialdehyde (MDA) and hydrogen peroxide contents under Cd stress. Furthermore, CaO NPs increased the expression levels of genes associated with anti-oxidative enzymes. The alleviation of Cd stress by CaO NPs is more obvious in Pu-9 than LJZ. It may be suggested that CaO NPs can be used as a potential chemical to alleviate Cd uptake and toxicity of the crops planted in the Cd-contaminated soil.


Subject(s)
Hordeum , Nanoparticles , Antioxidants/metabolism , Cadmium/metabolism , Calcium Compounds , Catalase/metabolism , Hordeum/genetics , Hydrogen Peroxide/metabolism , Oxidative Stress , Oxides , Seedlings , Superoxide Dismutase/metabolism
19.
J Hazard Mater ; 437: 129337, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35714538

ABSTRACT

Biochar (BC) has been recognized as an effective adsorbent to remove trace elements (TEs) from water. However, low surface functionality and small pore size can limit the adsorption ability of pristine biochar. These limitations can be addressed by using functionalized biochars which are developed by physical, chemical, or biological activation of biochar to improve their physico-chemical properties and adsorption efficiency. Despite the large amount of research concerning functionalized biochars in recent decades, to our knowledge, no comprehensive review of this topic has been published. This review focuses solely on the synthesis, characterization, and applications of functionalized/engineered biochars for removing TEs from water. Firstly, we evaluate the synthesis of functionalized biochars by physical, chemical, and biological strategies that yield the desired properties in the final product. The following section describes the characterization of functionalized biochars using various techniques (SEM, TEM, EDS, XRD, XANES/NEXAFS, XPS, FTIR, and Raman spectroscopy). Afterward, the role of functionalized biochars in the adsorption of different TEs from water/wastewater is critically evaluated with an emphasis on the factors affecting sorption efficiency, sorption mechanisms, fate of sorbed TEs from contaminated environments and associated challenges. Finally, we specifically scrutinized the future recommendations and research directions for the application of functionalized biochar. This review serves as a comprehensive resource for the use of functionalized biochar as an emerging environmental material capable of removing TEs from contaminated water/wastewater.


Subject(s)
Trace Elements , Adsorption , Charcoal/chemistry , Wastewater , Water
20.
Front Plant Sci ; 13: 843795, 2022.
Article in English | MEDLINE | ID: mdl-35360316

ABSTRACT

Arsenic (As) contamination in agricultural soils has become a great threat to the sustainable development of agriculture and food safety. Although a lot of approaches have been proposed for dealing with soil As contamination, they are not practical in crop production due to high cost, time-taking, or operational complexity. The rapid development of nanotechnology appears to provide a novel solution to soil As contamination. This study investigated the roles of calcium oxide nanoparticles (CaO NPs) in alleviating As toxicity in two barley genotypes (LJZ and Pu-9) differing in As tolerance. The exposure of barley seedlings to As stress showed a significant reduction in plant growth, calcium and chlorophyll content (SPAD value), fluorescence efficiency (Fv/m), and a dramatic increase in the contents of reactive oxygen species (ROS), malondialdehyde (MDA) and As, with LJZ being more affected than Pu-9. The exogenous supply of CaO NPs notably alleviated the toxic effect caused by As in the two barley genotypes. Moreover, the expression of As transporter genes, that is, HvPHT1;1, HvPHT1;3, HvPHT1;4 and HvPHT1;6, was dramatically enhanced when barley seedlings were exposed to As stress and significantly reduced in the treatment of CaO NPs addition. It may be concluded that the roles of CaO NPs in alleviating As toxicity could be attributed to its enhancement of Ca uptake, ROS scavenging ability, and reduction of As uptake and transportation from roots to shoots.

SELECTION OF CITATIONS
SEARCH DETAIL
...