Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 55(2): 1139-1150, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38378880

ABSTRACT

In recent years, some microorganisms have shown resistance to conventional treatments. Considering this increase in resistant pathogens, treatment alternatives are needed to promote greater treatment efficiency. In this sense, antimicrobial photodynamic therapy (aPDT) has been an alternative treatment. This technique uses a photosensitizer that is activated by light with a specific wavelength producing reactive species, leading to the death of pathogenic microorganisms. In this study, bacteriochlorophyll derivatives such as bacteriochlorin metoxi (Bchl-M) and bacteriochlorin trizma (Bchl-T) obtained from purple bacterium (Rhodopseudomonas faecalis), were evaluated as photosensitizers in the aPDT. Photodynamic inactivation (PDI) of the microorganisms Staphylococcus aureus, Micrococcus luteus, Candida albicans and Pseudomonas aeruginosa was investigated with both bacteriochlorins (Bchl-M and Bchl-T) at different concentrations (1, 15 and 30 µM for S. aureus; 1, 15, 30, 45, 60 and 75 µM for M. luteus; 30, 60, 90, 105, 120 and 150 µM for C. albicans; and 200 µM for P. aeruginosa) and different doses of light (20 and 30 J/cm2 for S. aureus and M. luteus; 30 and 45 J/cm2 for C. albicans; and 45 J/cm2 for P. aeruginosa) to inactivate them. Both photosensitizers showed good activation against S. aureus and for M. luteus, we observed the inactivation of these microorganisms at approximately 3 log, showing to be a good photosensitizers for these microorganisms.


Subject(s)
Candida albicans , Light , Photochemotherapy , Photosensitizing Agents , Pseudomonas aeruginosa , Staphylococcus aureus , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Candida albicans/drug effects , Candida albicans/radiation effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/radiation effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/radiation effects , Photochemotherapy/methods , Porphyrins/pharmacology , Porphyrins/chemistry , Microbial Viability/drug effects , Microbial Viability/radiation effects , Micrococcus luteus/drug effects , Micrococcus luteus/radiation effects , Bacteria/drug effects , Bacteria/radiation effects
2.
Molecules ; 27(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144496

ABSTRACT

In this study, we describe the semisynthesis of cost-effective photosensitizers (PSs) derived from chlorophyll a containing different substituents and using previously described methods from the literature. We compared their structures when used in photodynamic inactivation (PDI) against Staphylococcus aureus, Escherichia coli, and Candida albicans under different conditions. The PSs containing carboxylic acids and butyl groups were highly effective against S. aureus and C. albicans following our PDI protocol. Overall, our results indicate that these nature-inspired PSs are a promising alternative to selectively inactivate microorganisms using PDI.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Candida albicans , Carboxylic Acids , Chlorophyll A , Escherichia coli , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Staphylococcus aureus/physiology
3.
Photochem Photobiol Sci ; 21(7): 1185-1192, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35325444

ABSTRACT

Onychomycosis is the most common disease caused by fungal nail infections, and often caused by dermatophytes. This infection is very resistant to antifungal treatments, and promising Photodynamic Therapy (PDT) mediated treatments has been presented as a multitarget tracking. Optimization of PDT guide for uptake time, concentration of photosensitizers (PS) and the light dose to inactivate Trichophyton mentagrophytes. Curcumin derivatives, porphyrin Chlorin e6 (CHL-E6) and Chlorin-P6-6-N-butylamide-7-methyl-ester (CHL-butyl) were evaluated. PS photobleaching was observed on the hyphae photosensitized over the time, correlating the PS concentration and light dose of antifungal PDT. Porphyrin, Curcumin, Chl-e6 and Chl-butyl concentrations of 2.5 µg/mL, 0.025 µg/mL, 10 µg/mL and 5 µg/mL respectively, under illumination of 10.5 J/cm2 were the best antifungal conditions found in the study. Curcumin, in low concentrations, and chlorin were the PSs with higher activity anti-T. mentagrophytes.


Subject(s)
Curcumin , Photochemotherapy , Porphyrins , Antifungal Agents/pharmacology , Curcumin/pharmacology , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Trichophyton
4.
Photodiagnosis Photodyn Ther ; 34: 102251, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33705980

ABSTRACT

Photodynamic therapy presents a therapeutic choice that can be utilized to treat diverse neoplasms. In this technique, the critical element is a photosensitive molecule that absorbs light energy and transfers it to molecular oxygen or biological molecules to form reactive oxygen species, thus inducing irreversible damage to target cells and ultimately leading to cell death. Bacteriochlorin derivatives are employed as photosensitizers (PSs), possessing light-absorbing capacity in the near-infrared region. The objective of this study was to prepare a semi-synthetic bacteriochlorin from Rhodopseudomonas faecalis and adding Trizma® to improve solubility. Cell viability tests, flow cytometry (apoptotic and necrotic cells were identified by Annexin V and propidium iodide), and confocal microscopy were used to evaluate the photoactivity of bacteriochlorin-Trizma (Bchl-T) in fibroblast (HFF-1-control cells) and breast cancer (MCF-7 cells-target cells) cells. At concentrations above 0.5 µM, Bchl-T demonstrated 80 % cell death, presenting the highest PS interaction (via fluorescence microscopy) with lysosomes, mitochondria, and the endoplasmic reticulum; the cell death type was revealed as apoptosis (via cytometry). Our findings indicated the suitability of Bchl-T for future application in photodynamic therapy against cancer cells by inducing apoptosis.


Subject(s)
Photochemotherapy , Porphyrins , Apoptosis , Cell Line, Tumor , Humans , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Rhodopseudomonas
5.
Sci Rep ; 8(1): 4212, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29523862

ABSTRACT

In the past few years, the World Health Organization has been warning that the post-antibiotic era is an increasingly real threat. The rising and disseminated resistance to antibiotics made mandatory the search for new drugs and/or alternative therapies that are able to eliminate resistant microorganisms and impair the development of new forms of resistance. In this context, antimicrobial photodynamic therapy (aPDT) and helical cationic antimicrobial peptides (AMP) are highlighted for the treatment of localized infections. This study aimed to combine the AMP aurein 1.2 to aPDT using Enterococcus faecalis as a model strain. Our results demonstrate that the combination of aPDT with aurein 1.2 proved to be a feasible alternative capable of completely eliminating E. faecalis employing low concentrations of both PS and AMP, in comparison with the individual therapies. Aurein 1.2 is capable of enhancing the aPDT activity whenever mediated by methylene blue or chlorin-e6, but not by curcumin, revealing a PS-dependent mechanism. The combined treatment was also effective against different strains; noteworthy, it completely eliminated a vancomycin-resistant strain of Enterococcus faecium. Our results suggest that this combined protocol must be exploited for clinical applications in localized infections as an alternative to antibiotics.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Antimicrobial Cationic Peptides/metabolism , Biological Transport , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/radiation effects , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/radiation effects , Drug Synergism , Enterococcus faecalis/cytology , Enterococcus faecalis/drug effects , Enterococcus faecalis/metabolism , Enterococcus faecalis/radiation effects , Humans , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...