Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33808000

ABSTRACT

Gamma-TiAl (γ-TiAl) alloys can be used in high-end products relevant to the aerospace, defense, biomedical, and marine industries. Fabricating objects made of γ-TiAl alloys needs an additive manufacturing process called Electron Beam Melting (EBM) or other similar processes because these alloys are difficult-to-cut materials. An object fabricated by EBM exhibits poor surface finish and must undergo postprocessing. In this study, cylindrical specimens were fabricated by EBM and post-processed by turning at different cutting conditions (cutting speed, depth of cut, feed rate, insert radius, and coolant flowrate). The EBM conditions were as follows: average powder size 110 µm, acceleration voltage 60 kV, beam current 10 mA, beam scanning speed 2200 mm/s, and beam focus offset 0.20 mm. The surface roughness and cutting force were recorded for each set of cutting conditions. The values of the cutting conditions were set by the L36 Design of Experiment approach. The effects of the cutting conditions on surface roughness and cutting force are elucidated by constructing the possibility distributions (triangular fuzzy numbers) from the experimental data. Finally, the optimal cutting conditions to improve the surface finish of specimens made of γ-TiAl alloys are determined using the possibility distributions. Thus, this study's outcomes can be used to develop intelligent systems for optimizing additive manufacturing processes.

2.
Materials (Basel) ; 14(8)2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33920335

ABSTRACT

Grinding is commonly used for machining parts made of hard or brittle materials with the intent of ensuring a better surface finish. The material removal ability of a grinding wheel depends on whether the wheel surface is populated with a sufficiently high number of randomly distributed active abrasive grains. This condition is ensured by performing dressing operations at regular time intervals. The effectiveness of a dressing operation is determined by measuring the surface topography of the wheel (regions and their distributions on the grinding wheel work surface where the active abrasive grains reside). In many cases, image processing methods are employed to determine the surface topography. However, such procedures must be able to remove the regions where the abrasive grains do not reside while keeping, at the same time, the regions where the abrasive grains reside. Thus, special kinds of image processing techniques are needed to distinguish the non-grain regions from the grain regions, which requires a heavy computing load and long duration. As an alternative, in the framework of the "Biologicalisation in Manufacturing" paradigm, this study employs a bio-inspiration-based computing method known as DNA-based computing (DBC). It is shown that DBC can eliminate non-grain regions while keeping grain regions with significantly lower computational effort and time. On a surface of size 706.5 µm in the circumferential direction and 530 µm in the width direction, there are about 7000 potential regions where grains might reside, as the image processing results exhibit. After performing DBC, this number is reduced to about 300 (representing a realistic estimate). Thus, the outcomes of this study can help develop an intelligent image processing system to optimize dressing operations and thereby, grinding operations.

3.
Materials (Basel) ; 11(2)2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29425160

ABSTRACT

Grinding is one of the essential manufacturing processes for producing brittle or hard materials-based precision parts (e.g., optical lenses). In grinding, a grinding wheel removes the desired amount of material by passing the same area on the workpiece surface multiple times. How the topography of a workpiece surface evolves with these passes is thus an important research issue, which has not yet been addressed elaborately. The present paper tackles this issue from both the theoretical and the experimental points of view. In particular, this paper presents the results of experimental and theoretical investigations on the multi-pass surface grinding operations where the workpiece surface is made of glass and the grinding wheel consists of cBN abrasive grains. Both investigations confirm that a great deal of stochasticity is involved in the grinding mechanism, and the complexity of the workpiece surface gradually increases along with the number of passes.

4.
Materials (Basel) ; 10(5)2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28772810

ABSTRACT

Products made from natural materials are eco-friendly. Therefore, it is important to supply product developers with reliable information regarding the properties of natural materials. In this study, we consider a widely used natural material called jute, which grows in Bangladesh, India, and China. We described the results of tensile tests on jute yarns, as well as the energy absorption patterns leading to yarn failure. We have also used statistical analyses and possibility distributions to quantify the uncertainty associated with the following properties of jute yarn: tensile strength, modulus of elasticity, and strain to failure. The uncertainty and energy absorption patterns of jute yarns were compared with those of jute fibers. We concluded that in order to ensure the reliability and durability of a product made from jute, it is good practice to examine the material properties of yarns rather than those of fibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...