Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Article in English | MEDLINE | ID: mdl-38718411

ABSTRACT

Usher syndrome (USH) is a genetic disorder that is characterized by sensorineural hearing loss (HL) and visual abnormality, i.e., loss of night vision and side (peripheral) vision. Usher syndrome is categorized into four subtypes (USH1, USH2, USH3, USH4) on the basis of phenotypic spectrum. Profound hearing loss (HL), vestibular are flexia and language disturbance are typically associated with Usher type 1, while USH2 is linked with moderate to severe level of congenital HL. USH3 has late onset of deafness in life (referred to as "postlingual"), inconstant vestibular abnormality and onset of retinitis pigmentosa (RP) typically in 2nd decade of life. Patients with USH4 have no vestibular impairment and have late onset of retinitis pigmentosa (RP) and sensorineural hearing loss. Until now, 15 genetic loci have been reported to be linked with all types of USH. Among reported USH loci, nine are related to be involved in USH1, three in USH2, two in USH3 and one locus in USH4, respectively. Current review has described different types of Usher syndrome and their molecular genetics, and role of usher proteins in sensory organs. Moreover, we also suggested certain candidate genes for uncharacterized loci that may help the molecular geneticist to reach their target easily. Conclusion: The current catalogue of USH genetic data may assist in genetic counseling, genetic diagnosis, and genotype-phenotype correlation.

2.
Anim Biotechnol ; 35(1): 2344210, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38785376

ABSTRACT

The PPARGC1A gene plays a fundamental role in regulating cellular energy metabolism, including adaptive thermogenesis, mitochondrial biogenesis, adipogenesis, gluconeogenesis, and glucose/fatty acid metabolism. In a previous study, our group investigated seven SNPs in Mediterranean buffalo associated with milk production traits, and the current study builds on this research by exploring the regulatory influences of the PPARGC1A gene in buffalo mammary epithelial cells (BuMECs). Our findings revealed that knockdown of PPARGC1A gene expression significantly affected the growth of BuMECs, including proliferation, cell cycle, and apoptosis. Additionally, we observed downregulated triglyceride secretion after PPARGC1A knockdown. Furthermore, the critical genes related to milk production, including the STATS, BAD, P53, SREBF1, and XDH genes were upregulated after RNAi, while the FABP3 gene, was downregulated. Moreover, Silencing the PPARGC1A gene led to a significant downregulation of ß-casein synthesis in BuMECs. Our study provides evidence of the importance of the PPARGC1A gene in regulating cell growth, lipid, and protein metabolism in the buffalo mammary gland. In light of our previous research, the current study underscores the potential of this gene for improving milk production efficiency and overall dairy productivity in buffalo populations.


Subject(s)
Buffaloes , Epithelial Cells , Mammary Glands, Animal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Buffaloes/genetics , Epithelial Cells/metabolism , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Milk , Gene Expression Regulation , Lactation/genetics , Cell Proliferation/genetics , Gene Knockdown Techniques , Apoptosis/genetics
3.
Sensors (Basel) ; 24(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38610292

ABSTRACT

The cooperative, connected, and automated mobility (CCAM) infrastructure plays a key role in understanding and enhancing the environmental perception of autonomous vehicles (AVs) driving in complex urban settings. However, the deployment of CCAM infrastructure necessitates the efficient selection of the computational processing layer and deployment of machine learning (ML) and deep learning (DL) models to achieve greater performance of AVs in complex urban environments. In this paper, we propose a computational framework and analyze the effectiveness of a custom-trained DL model (YOLOv8) when deployed in diverse devices and settings at the vehicle-edge-cloud-layered architecture. Our main focus is to understand the interplay and relationship between the DL model's accuracy and execution time during deployment at the layered framework. Therefore, we investigate the trade-offs between accuracy and time by the deployment process of the YOLOv8 model over each layer of the computational framework. We consider the CCAM infrastructures, i.e., sensory devices, computation, and communication at each layer. The findings reveal that the performance metrics results (e.g., 0.842 mAP@0.5) of deployed DL models remain consistent regardless of the device type across any layer of the framework. However, we observe that inference times for object detection tasks tend to decrease when the DL model is subjected to different environmental conditions. For instance, the Jetson AGX (non-GPU) outperforms the Raspberry Pi (non-GPU) by reducing inference time by 72%, whereas the Jetson AGX Xavier (GPU) outperforms the Jetson AGX ARMv8 (non-GPU) by reducing inference time by 90%. A complete average time comparison analysis for the transfer time, preprocess time, and total time of devices Apple M2 Max, Intel Xeon, Tesla T4, NVIDIA A100, Tesla V100, etc., is provided in the paper. Our findings direct the researchers and practitioners to select the most appropriate device type and environment for the deployment of DL models required for production.

4.
Mater Horiz ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639038

ABSTRACT

Auxetic crystals exhibiting highly positive lateral expansivity when stretched are an experimentally elusive class of two-dimensional (2D) materials with tremendous potential, for example in the direct transduction of electric signals and the compensation of thermal expansion at the nanoscale. 2D tungsten semi-carbide (W2C) was theoretically predicted to exhibit giant auxetic behavior, but has yet to be synthesized, as the corresponding full carbide (WC) is energetically favored under thermodynamic equilibrium synthesis processes such as furnace-based chemical vapor deposition. Here, we report on an ad hoc designed dual-zone remote plasma deposition system specially conceived to grow tungsten carbides out of thermodynamic equilibrium with well-tuned ratios of W and C precursors. We report on the specific conditions under which this system allowed for the synthesis of flakes of few-layer tungsten semicarbide (FL-W2C) which are 2D in nature due to retained periodicity at the mesoscopic level in a Stranski-Krastanov growth process. Under applied strain, FL-W2C 2D crystals exhibit the strongest auxetic behavior observed to date. This result suggests that the theoretically predicted high negative Poisson's ratio of single-layer W2C, also extends to thicker FL-W2C flakes that are retaining the periodicity of the 2D crystal at the mesoscopic level.

5.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38656443

ABSTRACT

1H spin-lattice Nuclear Magnetic Resonance relaxometry experiments have been performed for collagen and collagen-based artificial tissues in the frequency range of 10 kHz-20 MHz. The studies were performed for non-hydrated and hydrated materials. The relaxation data have been interpreted as including relaxation contributions originating from 1H-1H and 1H-14N dipole-dipole interactions, the latter leading to Quadrupole Relaxation Enhancement effects. The 1H-1H relaxation contributions have been decomposed into terms associated with dynamical processes on different time scales. A comparison of the parameters for the non-hydrated and hydrated systems has shown that hydration leads to a decrease in the dipolar relaxation constants without significantly affecting the dynamical processes. In the next step, the relaxation data for the hydrated systems were interpreted in terms of a model assuming two-dimensional translational diffusion of water molecules in the vicinity of the macromolecular surfaces and a sub-diffusive motion leading to a power law of the frequency dependencies of the relaxation rates. It was found that the water diffusion process is slowed down by at least two orders of magnitude compared to bulk water diffusion. The frequency dependencies of the relaxation rates in hydrated tissues and hydrated collagen are characterized by different power laws (ωH-ß, where ωH denotes the 1H resonance frequency): the first of about 0.4 and the second close to unity.

6.
Plants (Basel) ; 13(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38592875

ABSTRACT

Thiamethoxam, a second-generation neonicotinoid insecticide is widely used for controlling sap-sucking insect pests including Rhopalosiphum padi. The current study aimed to investigate the life-history parameters and feeding behavior of R. padi following treatments with sublethal concentrations of thiamethoxam. The lethal concentration 50 (LC50) value of thiamethoxam against adult R. padi was 11.458 mg L-1 after 48 h exposure. The sublethal concentrations of thiamethoxam (LC5 and LC10) significantly decreased the adult longevity, fecundity, and reproductive days in the directly exposed aphids (F0 generation). In the progeny R. padi (F1), the developmental durations and total prereproductive period (TPRP) were decreased while the adult longevity, fecundity, and reproductive days (RPd) were increased at both thiamethoxam concentrations. The demographic parameters including the net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) were prolonged only at the LC5 of thiamethoxam. The EPG results indicated that the sublethal concentrations of thiamethoxam increases the total duration of non-probing (Np) while reducing the total duration of E2 in directly exposed aphids (F0). Interestingly, the E2 were significantly increased in the progeny generation (F1) descending from previously exposed parental aphids (F0). Overall, this study showed that thiamethoxam exhibited high toxicity against directly exposed individuals (F0), while inducing intergenerational hormetic effects on the progeny generation (F1) of R. padi. These findings provided crucial details about thiamethoxam-induced hormetic effects that might be useful in managing resurgences of this key pest.

8.
Ecotoxicology ; 33(3): 253-265, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38468020

ABSTRACT

In agroecosystems, insects contend with chemical insecticides often encountered at sublethal concentrations. Insects' exposure to these mild stresses may induce hormetic effects, which has consequences for managing insect pests. In this study, we used an electrical penetration graph (EPG) technique to investigate the feeding behavior and an age-stage, two-sex life table approach to estimate the sublethal effects of thiamethoxam on greenbug, Schizaphis graminum. The LC5 and LC10 of thiamethoxam significantly decreased longevity and fecundity of directly exposed adult aphids (F0). However, the adult longevity, fecundity, and reproductive days (RPd)-indicating the number of days in which the females produce offspring - in the progeny generation (F1) exhibited significant increase when parental aphids (F0) were treated with LC5 of the active ingredient. Subsequently, key demographic parameters such as intrinsic rate of increase (r) and net reproductive rate (R0) significantly increased at LC5 treatment. EPG recordings showed that total durations of non-probing (Np), intercellular stylet pathway (C), and salivary secretion into the sieve element (E1) were significantly increased, while mean duration of probing (Pr) and total duration of phloem sap ingestion and concurrent salivation (E2) were decreased in F0 adults exposed to LC5 and LC10. Interestingly, in the F1 generation, total duration of Np was significantly decreased while total duration of E2 was increased in LC5 treatment. Taken together, our results showed that an LC5 of thiamethoxam induces intergenerational hormetic effects on the demographic parameters and feeding behavior of F1 individuals of S. graminum. These findings have important implications on chemical control against S. graminum and highlight the need for a deeper understanding of the ecological consequences of such exposures within pest management strategies across the agricultural landscapes.


Subject(s)
Aphids , Insecticides , Humans , Animals , Female , Thiamethoxam , Reproduction , Insecticides/toxicity , Feeding Behavior , Demography
9.
Disaster Med Public Health Prep ; 18: e34, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38384190

ABSTRACT

As heatwaves increase and intensify worldwide, so has the research aimed at outlining strategies to protect individuals from their impact. Interventions that promote adaptive measures to heatwaves are encouraged, but evidence on how to develop such interventions is still scarce. Although the Health Belief Model is one of the leading frameworks guiding behavioral change interventions, the evidence of its use in heatwave research is limited. This rapid review aims to identify and describe the main themes and key findings in the literature regarding the use of the Health Belief Model in heatwaves research. It also highlights important research gaps and future research priorities. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 10 articles were included, with a geographic distribution as follows: United States (n = 1), Australia (n = 1), Pakistan (n = 1), and China (n = 1), as well as Malaysia (n = 2), Germany (n = 1), and Austria (n = 1). Results showed a lack of research using the Health Belief Model to study heatwaves induced by climate change. Half of the studies assessed heatwave risk perception, with the 2 most frequently used constructs being Perceived Susceptibility and Perceived Severity. The Self-efficacy construct was instead used less often. Most of the research was conducted in urban communities. This review underscores the need for further research using the Health Belief Model.


Subject(s)
Climate Change , Health Belief Model , Humans , Australia , Germany , China
10.
RSC Adv ; 14(10): 7022-7030, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38414991

ABSTRACT

Uric acid (UA) is a significant indicator of human health because it is linked to several diseases, including renal failure, kidney stones, arthritis, and gout. Uric acid buildup in the joints is the source of chronic and painful diseases. When UA is present in large quantities, it causes tissue injury in the joints that are afflicted. In this research, silver oxide-doped activated carbon nanoparticles were synthesized and then functionalized with an ionic liquid. The synthesized nanomaterial assembly was employed as a colorimetric sensing platform for uric acid. Activated carbon offers a large internal surface area that acts as a good carrier for catalytic reactions. A salt-melting approach was used to synthesize the silver oxide-doped activated carbon nanocomposite. The synthesis was confirmed through various techniques, such as UV-vis spectrophotometer, FTIR, XRD, SEM, and EDX. The colorimetric change from blue-green to colorless was observed with the naked eye and confirmed by UV-vis spectroscopy. To obtain the best colorimetric change, several parameters, such as pH, capped NP loading, TMB concentration, hydrogen peroxide concentration, and time, were optimized. The optimized experimental conditions for the proposed sensor were pH 4 with 35 µL of NPs, a 40 mM TMB concentration, and a 4 minutes incubation time. The sensor linear range is 0.001-0.36 µM, with an R2 value of 0.999. The suggested sensor limits of detection and quantification are 0.207 and 0.69 nM, respectively. Potential interferers, such as ethanol, methanol, urea, Ca2+, K+, and dopamine, did not affect the detection of uric acid.

11.
Rice (N Y) ; 17(1): 9, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38244131

ABSTRACT

Rice leaf folder, Cnaphalocrocis medinalis (Guenée), is one of the most serious pests on rice. At present, chemical control is the main method for controlling this pest. However, the indiscriminate use of chemical insecticides has non-target effects and may cause environmental pollution. Besides, leaf curling behavior by C. medinalis may indirectly reduce the efficacy of chemical spray. Therefore, it is crucial to cultivate efficient rice varieties resistant to this pest. Previous studies have found that three different rice varieties, Zhongzao39 (ZZ39), Xiushui134 (XS134), and Yongyou1540 (YY1540), had varying degrees of infestation by C. medinalis. However, it is currently unclear whether the reason for this difference is related to the difference in defense ability of the three rice varieties against the infestation of C. medinalis. To explore this issue, the current study investigated the effects of three rice varieties on the growth performance and food utilization capability of the 4th instar C. medinalis. Further, it elucidated the differences in defense responses among different rice varieties based on the differences in leaf physiological and biochemical indicators and their impact on population occurrence. The results showed that the larval survival rate was the lowest, and the development period was significantly prolonged after feeding on YY1540. This was not related to the differences in leaf wax, pigments, and nutritional components among the three rice varieties nor to the feeding preferences of the larvae. The rate of superoxide anion production, hydrogen peroxide content, and the activity of three protective enzymes were negatively correlated with larval survival rate, and they all showed the highest in YY1540 leaves. Compared to other tested varieties, although the larvae feeding on YY1540 had higher conversion efficiency of ingested food and lower relative consumption rate, their relative growth was faster, indicating stronger food utilization capability. However, they had a lower accumulation of protein. This suggests that different rice varieties had different levels of oxidative stress after infestation by C. medinalis. The defense response of YY1540 was more intense, which was not conducive to the development of the larvae population. These results will provide new insights into the interaction mechanism between different rice varieties and C. medinalis and provide a theoretical basis for cultivating rice varieties resistant to this pest.

12.
ACS Omega ; 8(50): 48130-48144, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38144150

ABSTRACT

Arsenic in groundwater is a harmful and hazardous substance that must be removed to protect human health and safety. Adsorption, particularly using metal oxides, is a cost-effective way to treat contaminated water. These metal oxides must be selected systematically to identify the best material and optimal operating conditions for the removal of arsenic from water. Experimental research has been the primary emphasis of prior work, which is time-consuming and costly. The previous simulation studies have been limited to specific adsorbents such as iron oxides. It is necessary to study other metal oxides to determine which ones are the most effective at removing arsenic from water. In this work, a molecular simulation computational framework using molecular dynamics and Monte Carlo simulations was developed to investigate the adsorption of arsenic using various potential metal oxides. The molecular structures have been optimized and proceeded with sorption calculations to observe the adsorption capabilities of metal oxides. In this study, 15 selected metal oxides were screened at a pressure of 100 kPa and a temperature of 298 K for As(V) in the form of HAsO4 at pH 7. Based on adsorption capacity calculations for selected metal oxides/hydroxides, aluminum hydroxide (Al(OH)3), ferric hydroxide (FeOOH), lanthanum hydroxide La(OH)3, and stannic oxide (SnO2) were the most effective adsorbents with adsorption capacities of 197, 73.6, 151, and 42.7 mg/g, respectively, suggesting that metal hydroxides are more effective in treating arsenic-contaminated water than metal oxides. The computational results were comparable with previously published literature with a percentage error of 1%. Additionally, SnO2, which is rather unconventional to be used in this application, demonstrates potential for arsenic removal and could be further explored. The effects of pH from 1 to 13, temperature from 281.15 to 331.15 K, and pressure from 100 to 350 kPa were studied. Results revealed that adsorption capacity decreased for the high-temperature applications while experiencing an increase in pressure-promoted adsorption. Furthermore, response surface methodology (RSM) has been employed to develop a regression model to describe the effect of operating variables on the adsorption capacity of screened adsorbents for arsenic removal. The RSM models utilizing CCD (central composite design) were developed for Al(OH)3, La(OH)3, and FeOOH, having R2 values 0.92, 0.67, and 0.95, respectively, suggesting that the models developed were correct.

13.
Front Physiol ; 14: 1238111, 2023.
Article in English | MEDLINE | ID: mdl-37929209

ABSTRACT

The chemical application is considered one of the most crucial methods for controlling insect pests, especially in intensive farming practices. Owing to the chemical application, insect pests are exposed to toxic chemical insecticides along with other stress factors in the environment. Insects require energy and resources for survival and adaptation to cope with these conditions. Also, insects use behavioral, physiological, and genetic mechanisms to combat stressors, like new environments, which may include chemicals insecticides. Sometimes, the continuous selection pressure of insecticides is metabolically costly, which leads to resistance development through constitutive upregulation of detoxification genes and/or target-site mutations. These actions are costly and can potentially affect the biological traits, including development and reproduction parameters and other key variables that ultimately affect the overall fitness of insects. This review synthesizes published in-depth information on fitness costs induced by insecticide resistance in insect pests in the past decade. It thereby highlights the insecticides resistant to insect populations that might help design integrated pest management (IPM) programs for controlling the spread of resistant populations.

14.
Pestic Biochem Physiol ; 196: 105593, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945243

ABSTRACT

The fall armyworm, Spodoptera frugiperda, is a notorious polyphagous pest that causes serious economic losses in crucial crops and has invaded Africa and Asia. Lufenuron is widely used for controlling S. frugiperda in China, owing to its high toxicity against this key pest, and less pollution and little impact on natural enemies. In the present study, the sublethal and transgenerational effects of lufenuron on S. frugiperda were investigated to provide in-depth information for the rational use of lufenuron. Results showed that the development time and pupae weight were not significantly affected following exposure of females to LC10 and LC25 and male S. frugiperda to the LC10 of lufenuron. However, LC25 exposure significantly reduced pupal and total development time and pupae weight of male S. frugiperda. The longevity of S. frugiperda adults was prolonged by lufenuron and the fecundity of S. frugiperda treated with LC10 of lufenuron was significantly increased by 40% compared to the control. In addition, our study demonstrated that the LC25 of lufenuron had transgenerational effects on the progeny generation. The development time of female S. frugiperda whose parents were exposed to LC25 of lufenuron was significantly decreased compared to the control. And then, the expression profiles of Vg, VgR, JHEH, JHE, JHAMT, JHBP, CYP307A1, CYP306A1, CYP302A1 and CYP314A1 genes involved in insect reproduction and development were analyzed using Quantitative Real-Time PCR (RT-qPCR). Results showed that Vg, VgR, JHE, JHAMT, and CYP306A1 were significantly upregulated at the LC10 of lufenuron, which revealed that these upregulated genes might be linked with increased fecundity of S. frugiperda. Taken together, these findings highlighted the importance of sublethal and transgenerational effects under laboratory conditions and these effects may change the population dynamics in the field. Therefore, our study provided valuable information for promoting the rational use of lufenuron for controlling S. frugiperda.


Subject(s)
Benzamides , Reproduction , Female , Animals , Spodoptera/genetics , Fertility , Pupa , Larva
15.
Onderstepoort J Vet Res ; 90(1): e1-e9, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37916704

ABSTRACT

Brucellosis is a major threat to public health especially in developing countries including Pakistan. This study reveals the characterisation of Brucella species affecting humans and goats in the Swat region of Khyber Pakhtunkhwa, Pakistan. Blood samples were collected from shepherds and goats and analysed by Rose Bengal precipitation test (RBPT), standard plate agglutination test (SPAT), polymerase chain reaction (PCR) and Sanger sequencing of 16S rRNA gene. The findings of the study indicated 24% (36/150) and 11.3% (17/150) positivity for Brucella abortus and Brucella melitensis, respectively, in human samples. In samples of goats, 26.66% (40/150) were positive for B. abortus and 16.66% (25/150) samples were positive B. melitensis by SPAT. The species-specific PCR confirmed B. abortus in 24% (36/150) of human samples and 26.66% (17/150) of goat samples by targeting the IS711 locus. The remaining seropositive samples were confirmed as B. melitensis using IS711 M species-specific primer. The sequences of the amplified fragments of the 16S rRNA gene were blasted, and phylogenetic analysis revealed that Brucella species circulating in the Swat district were closely related to B. melitensis and B. abortus reported from India, China, Philippines, and the United States (US) showing the existence of the possible epidemiological linkage among the Brucella species. This study concluded that there was a higher prevalence of B. abortus (26.6%) in humans and goats compared to B. melitensis (16.6%). These results revealed that the Brucella species were circulating in both humans and goats in the study areas. The findings of the study concluded that B. abortus and B. melitensis were circulating in goats and shepherds with a higher prevalence of B. abortus than B. melitensis. Furthermore, the Brucella species identified in Swat were phylogenetically related to the Brucella species reported from India, China, Philippines and the US.Contribution: The proposed study covers the scope of the journal. The species of the genus Brucella affect both animals and shepherds. This study investigates the seroprevalence of brucellosis in shepherds and goats in different geographical areas in the Swat district. The phylogenetic analysis of the Brucella spp. identified in Swat showed close relationships to the Brucella species reported in India, China, Philippines and the US, which shows the possible epidemiological linkages between the Brucella spp.


Subject(s)
Brucellosis , Goat Diseases , Humans , Animals , Ecosystem , Seroepidemiologic Studies , Phylogeny , RNA, Ribosomal, 16S/genetics , Brucellosis/epidemiology , Brucellosis/veterinary , Brucella abortus/genetics , Disease Outbreaks , Goats , Goat Diseases/epidemiology
16.
Sci Rep ; 13(1): 20733, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38007559

ABSTRACT

Quantum-tunneling metal-insulator-metal (MIM) diodes have emerged as a significant area of study in the field of materials science and electronics. Our previous work demonstrated the successful fabrication of these diodes using atmospheric pressure chemical vapor deposition (AP-CVD), a scalable method that surpasses traditional vacuum-based methods and allows for the fabrication of high-quality Al2O3 films with few pinholes. Here, we show that despite their extremely small size 0.002 µm2, the MIM nanodiodes demonstrate low resistance at zero bias. Moreover, we have observed a significant enhancement in resistance by six orders of magnitude compared to our prior work, Additionally, we have achieved a high responsivity of 9 AW-1, along with a theoretical terahertz cut-off frequency of 0.36 THz. Our approach provides an efficient alternative to cleanroom fabrication, opening up new opportunities for manufacturing terahertz-Band devices. The results of our study highlight the practicality and potential of our method in advancing nanoelectronics. This lays the foundation for the development of advanced quantum devices that operate at terahertz frequencies, with potential applications in telecommunications, medical imaging, and security systems.

17.
Toxics ; 11(10)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37888656

ABSTRACT

The bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae) is one of the most economically important pests of wheat crops worldwide. Thiamethoxam, bifenthrin, and flonicamid are extensively used insecticides for controlling this key pest. However, the indiscriminate use of chemical insecticides has led to the development of resistance in insects. In this study, we assessed the development of selection-induced resistance to bifenthrin, flonicamid, and thiamethoxam under controlled laboratory conditions. Additionally, we employed the age-stage, two-sex life table method to examine the fitness of R. padi. After ten generations of selection, bifenthrin-, flonicamid-, and thiamethoxam-resistant strains of R. padi were developed with resistance levels of 34.46, 31.97, and 26.46-fold, respectively. The life table analysis revealed a significant decrease in adult longevity and fecundity in these resistant strains compared to susceptible strain. Furthermore, the key demographic parameters such as net reproductive rate (R0) and reproductive days exhibited a significant reduction in all resistant strains, while the intrinsic rate of increase (r) and finite rate of increase (λ) were decreased only in resistant strains to bifenthrin and thiamethoxam. Taken together, these findings provide a comprehensive understanding of laboratory-induced insecticide resistance evolution and the associated fitness costs in R. padi. This knowledge could help to design resistance management strategies against this particular pest of wheat.

18.
Expert Rev Anti Infect Ther ; : 1-8, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712527

ABSTRACT

BACKGROUND: Irrational use of antibiotics intensifies resistance and jeopardizes advances made in modern medicine. We aimed to conduct a baseline gap analysis survey on antibiotic prescription practices across Pakistan. RESEARCH DESIGN AND METHODS: This multi-centered cross-sectional survey was conducted at six public sector tertiary care hospitals from February 2021 to March 2021. Data related to various variables including hospital infrastructure, policies and practices, monitoring and feedback, and epidemiological, clinical, and antibiotic prescription for surveyed patients was collected using World Health Organization (WHO) Point Prevalence Survey (PPS) methodology. RESULTS: In a survey of 837 inpatients, 78.5% were prescribed antibiotics. Most commonly prescribed antimicrobial was ceftriaxone (21.7%), followed by metronidazole (17.3%), cefoperazone-sulbactam (8.4%), amoxicillin-clavulanate (6.3%), and piperacillin/tazobactam (5.9%). Surgical prophylaxis (36.7%) and community-acquired infections (24.7%) were the main reasons for antibiotic prescriptions. Single antibiotics were given to 46.7% of patients, 39.9% received a combination of two antibiotics, and 12.5% were prescribed three or more antibiotics. Among six hospitals surveyed, two had drug and therapeutic committees, three had infection prevention and control committees, and one had an antibiotic formulary. CONCLUSION: Findings demonstrate high consumption of broad-spectrum antimicrobials and emphasize the importance of expanding antimicrobial stewardship programs among hospitals. Mentoring clinical teams could help rationalize antimicrobial use.

19.
Pathogens ; 12(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37764888

ABSTRACT

Ixodid ticks are responsible for the transmission of various intracellular bacteria, such as the Rickettsia species. Little Information is available about the genetic characterization and epidemiology of Rickettsia spp. The current study was designed to assess the tick species infesting various livestock hosts and the associated Rickettsia spp. in Pakistan. Ticks were collected from different livestock hosts (equids, cattle, buffaloes, sheep, goats, and camels); morphologically identified; and screened for the genetic characterization of Rickettsia spp. by the amplification of partial fragments of the gltA, ompA and ompB genes. Altogether, 707 ticks were collected from 373 infested hosts out of 575 observed hosts. The infested hosts comprised 105 cattle, 71 buffaloes, 70 sheep, 60 goats, 34 camels, and 33 equids. The overall occurrence of Rickettsia spp. was 7.6% (25/330) in the tested ticks. Rickettsia DNA was detected in Rhipicephalus haemaphysaloides (9/50, 18.0%), followed by Rhipicephalus turanicus (13/99, 13.1%), Haemaphysalis cornupunctata (1/18, 5.5%), and Rhipicephalus microplus (2/49, 4.1%); however, no rickettsial DNA was detected in Hyalomma anatolicum (71), Hyalomma dromedarii (35), and Haemaphysalis sulcata (8). Two Rickettsia agents were identified based on partial gltA, ompA, and ompB DNA sequences. The Rickettsia species detected in Rh. haemaphysaloides, Rh. turanicus, and Rh. microplus showed 99-100% identity with Rickettsia sp. and Candidatus Rickettsia shennongii, and in the phylogenetic trees clustered with the corresponding Rickettsia spp. The Rickettsia species detected in Rh. haemaphysaloides, Rh. turanicus, Rh. microplus, and Ha. cornupunctata showed 100% identity with R. massiliae, and in the phylogenetic trees it was clustered with the same species. Candidatus R. shennongii was characterized for the first time in Rh. haemaphysaloides, Rh. turanicus, and Rh. microplus. The presence of SFG Rickettsia spp., including the human pathogen R. massiliae, indicates a zoonotic risk in the study region, thus stressing the need for regular surveillance.

20.
Heliyon ; 9(7): e17818, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539235

ABSTRACT

The present study was carried out to document the diversity and ecological characteristics of macrofungi of Bajaur, Pakistan. The diversity of macrofungi comprised 51 species belonging to 22 families and 37 genera. The families Agaricaceae (7 species) and Psathyrellaceae (7 species) were found dominant followed by Tricholomataceae (4 species), Fomitopsidaceae and Polyporaceae (4 species each) and Amanitaceae (3 species). White (23 species), brown (11 species), and yellow were the most prevalent morphological colours in basidiocarps (8 species). Among the identified species, 32 were saprophytic in nutrition followed by 7 parasitic, 6 saprophytic and parasitic both, while 6 mycorrhizal that make association with higher plants. The distribution of macrofungal species in the three tehsils of Bajaur was also evaluated based on Shannon diversity index, Simpson diversity index and evenness. The highest Shannon diversity index and Simpson diversity index were found for tehsil Utman Kheil at 3.73 and 0.97, while the maximum value of evenness for tehsil Khar with 0.92 value. The results indicate a very high species richness of the study site. Four species out of the total were identified to be new reports from Pakistan. This survey's findings suggested that there is a wide variety of macrofungi that might be used as food and alternative medications if further research is carried out.

SELECTION OF CITATIONS
SEARCH DETAIL
...