Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Front Immunol ; 15: 1339470, 2024.
Article in English | MEDLINE | ID: mdl-38633251

ABSTRACT

Protozoa exert a serious global threat of growing concern to human, and animal, and there is a need for the advancement of novel therapeutic strategies to effectively treat or mitigate the impact of associated diseases. Omega polyunsaturated fatty acids (ω-PUFAs), including Omega-3 (ω-3) and omega-6 (ω-6), are constituents derived from various natural sources, have gained significant attention for their therapeutic role in parasitic infections and a variety of essential structural and regulatory functions in animals and humans. Both ω-3 and ω-6 decrease the growth and survival rate of parasites through metabolized anti-inflammatory mediators, such as lipoxins, resolvins, and protectins, and have both in vivo and in vitro protective effects against various protozoan infections. The ω-PUFAs have been shown to modulate the host immune response by a commonly known mechanism such as (inhibition of arachidonic acid (AA) metabolic process, production of anti-inflammatory mediators, modification of intracellular lipids, and activation of the nuclear receptor), and promotion of a shift towards a more effective immune defense against parasitic invaders by regulation the inflammation like prostaglandins, leukotrienes, thromboxane, are involved in controlling the inflammatory reaction. The immune modulation may involve reducing inflammation, enhancing phagocytosis, and suppressing parasitic virulence factors. The unique properties of ω-PUFAs could prevent protozoan infections, representing an important area of study. This review explores the clinical impact of ω-PUFAs against some protozoan infections, elucidating possible mechanisms of action and supportive therapy for preventing various parasitic infections in humans and animals, such as toxoplasmosis, malaria, coccidiosis, and chagas disease. ω-PUFAs show promise as a therapeutic approach for parasitic infections due to their direct anti-parasitic effects and their ability to modulate the host immune response. Additionally, we discuss current treatment options and suggest perspectives for future studies. This could potentially provide an alternative or supplementary treatment option for these complex global health problems.


Subject(s)
Fatty Acids, Omega-3 , Parasitic Diseases , Protozoan Infections , Animals , Humans , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Unsaturated , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Protozoan Infections/drug therapy , Parasitic Diseases/drug therapy
2.
Phys Chem Chem Phys ; 26(8): 6736-6751, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38323471

ABSTRACT

An investigation into the intrinsic electrical conductivity of perovskite powders MAPbX3, where X represents iodine (I), bromine (Br), or chlorine (Cl), was conducted to explore its impact on their photovoltaic performance. Results revealed that MAPbCl3 demonstrated light absorption ability in the ultraviolet and visible regions, while MAPbBr3 showed capacity for light absorption at longer wavelengths in the visible spectrum. On the other hand, MAPbI3 exhibited good absorption at longer wavelengths, indicating its ability to absorb light in the near-infrared region. The optical bandgap of each perovskite was determined to be 2.90 eV for MAPbCl3, 2.20 eV for MAPbBr3, and 1.47 eV for MAPbI3. The electrical conductivities of these powders were measured in-plane using the four-probe method and through-plane by electrochemical impedance spectroscopy (EIS). Electrochemical impedance spectroscopy (EIS) studies revealed a significant change in the conductivity of the MAPbI3 perovskite at temperatures between 80 °C and 100 °C. This change could be attributed to structural modifications induced when the temperature exceeds these values. The through-plane conductivity changed from 3 × 10-8 S cm-1 at 60 °C to approximately 6 × 10-5 S cm-1 at 120 °C and around 2 × 10-3 S cm-1 at 200 °C. Meanwhile, the sheet conductivity (in-plane conductivity) measurements performed at ambient temperature reveal that sheet conductivities are 489 × 103 S m-1, 486 × 103 S m-1 and 510 × 103 S m-1 for MAPbBr3, MAPbCl3 and MAPbI3, respectively. This study provides valuable insights for optimizing the performance of perovskite solar cells. Understanding how dopants influence the electrical conductivity and photovoltaic properties of the perovskite material, this work will enable researchers to design and engineer more efficient and stable solar cell devices based on MAPbX3 perovskites.

3.
Front Neurosci ; 17: 1225875, 2023.
Article in English | MEDLINE | ID: mdl-37600019

ABSTRACT

The gut microbiota (GM) plays an important role in the physiology and pathology of the host. Microbiota communicate with different organs of the organism by synthesizing hormones and regulating body activity. The interaction of the central nervous system (CNS) and gut signaling pathways includes chemical, neural immune and endocrine routes. Alteration or dysbiosis in the gut microbiota leads to different gastrointestinal tract disorders that ultimately impact host physiology because of the abnormal microbial metabolites that stimulate and trigger different physiologic reactions in the host body. Intestinal dysbiosis leads to a change in the bidirectional relationship between the CNS and GM, which is linked to the pathogenesis of neurodevelopmental and neurological disorders. Increasing preclinical and clinical studies/evidence indicate that gut microbes are a possible susceptibility factor for the progression of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and autism spectrum disorder (ASD). In this review, we discuss the crucial connection between the gut microbiota and the central nervous system, the signaling pathways of multiple biological systems and the contribution of gut microbiota-related neurological disorders.

4.
Folia Microbiol (Praha) ; 68(6): 867-888, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37160524

ABSTRACT

Fungi are producers of lignolytic extracellular enzymes which are used in industries like textile, detergents, biorefineries, and paper pulping. This study assessed for the production, purification, and characterization of novel p-diphenol oxidase (PDO; laccase) enzyme from lignolytic white-rot fungal isolate. Fungi samples collected from different areas of Pakistan were initially screened using guaiacol plate method. The maximum PDO producing fungal isolate was identified on the basis of ITS (internal transcribed spacer sequence of DNA of ribosomal RNA) sequencing. To get optimum enzyme yield, various growth and fermentation conditions were optimized. Later PDO was purified using ammonium sulfate precipitation, size exclusion, and anion exchange chromatography and characterized. It was observed that the maximum PDO producing fungal isolate was Schizophyllum commune (MF-O5). Characterization results showed that the purified PDO was a monomeric protein with a molecular mass of 68 kDa and showed stability at lower temperature (30 °C) for 1 h. The Km and Vmax values of the purified PDO recorded were 2.48 mM and 6.20 U/min. Thermal stability results showed that at 30 °C PDO had 119.17 kJ/K/mol Ea value and 33.64 min half-life. The PDO activity was stimulated by Cu2+ ion at 1.0 mM showing enhanced activity up to 111.04%. Strong inhibition effect was noted for Fe2+ ions at 1 mM showing 12.04% activity. The enzyme showed stability against 10 mM concentration oxidizing reducing agents like DMSO, EDTA, H2O2, NaOCl, and urea and retained more than 75% of relative activity. The characterization of purified PDO enzyme confirmed its tolerance against salt, metal ions, organic solvents, and surfactants indicating its ability to be used in the versatile commercial applications.


Subject(s)
Laccase , Schizophyllum , Laccase/metabolism , Schizophyllum/genetics , Schizophyllum/metabolism , Hydrogen Peroxide , Hydrogen-Ion Concentration , Temperature , Enzyme Stability
5.
Biomed Res Int ; 2023: 6517963, 2023.
Article in English | MEDLINE | ID: mdl-36755690

ABSTRACT

Purpose: Hepatocellular carcinoma (HCC) is a disease with great heterogeneity and a high mortality rate. It is crucial to identify reliable biomarkers for diagnosis, prognosis, and treatment to improve clinical outcomes in patients with HCC. Alpha-fetoprotein (AFP) is not only a widely used biomarker in clinical practice but also plays a complicated role in HCC, and it has recently been considered to be related to immunotherapy. MicroRNAs (miRNAs) are regarded as key regulators and promising biomarkers of HCC. We investigated the role of an AFP-related miRNA, miR-135b-5p, in HCC progression. Methods: Identification of miR-135b-5p was performed based on a cohort of 65 HCC cases and the liver hepatocellular carcinoma cohort of The Cancer Genome Atlas (Asian people only). A combination of whole-transcriptome sequencing and high-dimensional proteomic technologies was used to study the role of miR-135b-5p in HCC. Results: Upregulation of miR-135b-5p was detected in patients with HCC with high serum AFP levels (AFP > 400 ng/ml). Elevated miR-135b-5p expression was associated with adverse prognosis. We also identified the relevance between high miR-135b-5p expression and tumor-related pathological characteristics, such as Edmondson grade and vascular invasion. We revealed tyrosine kinase nonreceptor 1 as a potential target of miR-135b-5p. Additionally, the transcriptional start site of miR-135b-5p had potential binding sites for SRY-box transcription factor 9, and the stemness properties of tumor cells were more remarkable in HCC with the upregulation of miR-135b-5p. The molecular characterization of the miR-135b-5p-high group was similar to that of the HCC subclasses containing moderately and poorly differentiated tumors. Finally, gene signatures associated with improved clinical outcomes in immune checkpoint inhibitor therapy were upregulated in the miR-135b-5p-high group. Conclusion: miR-135b-5p could be a biomarker for predicting the prognosis and antiprogrammed cell death protein 1 monotherapy response in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , alpha-Fetoproteins/genetics , alpha-Fetoproteins/metabolism , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , MicroRNAs/metabolism , Proteomics , Transcriptome
6.
Front Physiol ; 14: 1123692, 2023.
Article in English | MEDLINE | ID: mdl-36846337

ABSTRACT

The interaction of post-traumatic stress disorder (PTSD) and atherosclerosis (AS) increase the risk of mortality. Metabolism and immunity play important roles in the comorbidity associated with PTSD and AS. The adenosine monophosphate-activated protein kinase/mammalian target of rapamycin and phosphatidylinositol 3-kinase/Akt pathways are attractive research topics in the fields of metabolism, immunity, and autophagy. They may be effective intervention targets in the prevention and treatment of PTSD comorbidity with AS. Herein, we comprehensively review metabolic factors, including glutamate and lipid alterations, in PTSD comorbidity with AS and discuss the possible implications in the pathophysiology of the diseases.

7.
Mol Syndromol ; 14(1): 11-20, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36777705

ABSTRACT

Introduction: Intellectual disability (ID) is a lifelong disability that affects an individual‧s learning capacity and adaptive behavior. Such individuals depend on their families for day-to-day survival and pose a significant challenge to the healthcare system, especially in developing countries. ID is a heterogeneous condition, and genetic studies are essential to unravel the underlying cellular pathway for brain development and functioning. Methods: Here we studied a female index patient, born to a consanguineous Pakistani couple, showing clinical symptoms of ID, ataxia, hypotonia, developmental delay, seizures, speech abnormality, and aggressive behavior. Whole exome sequencing (WES) coupled with Sanger sequencing was performed for molecular diagnosis. Further, 3D protein modeling was performed to see the effect of variant on protein structure. Results: WES identified a novel homozygous missense variant (c.178T>C; p.Tyr60His) in the ANK3 gene. In silico analysis and 3-dimensional (3D) protein modeling supports the deleterious impact of this variant on the encoding protein, which compromises the protein‧s overall structure and function. Conclusion: Our finding supports the clinical and genetic diversity of the ANK3 gene as a plausible candidate gene for ID syndrome. Intelligence is a complex polygenic human trait, and understanding molecular and biological pathways involved in learning and memory can solve the complex puzzle of how cognition develops. Intellectual disability (ID) is defined as a deficit in an individual‧s learning and adaptive behavior at an early age of onset [American Psychiatric Association, 2013]. It is one of the major medical, and cognitive disorders with a prevalence of 1-3% in the population worldwide [Leonard and Wen, 2002]. ID often exists with other disabling mental conditions such as autism, attention deficit hyperactivity disorder, epilepsy, schizophrenia, bipolar disorder, or depression. Almost half of the cases appear to have a genetic explanation that ranges from cytogenetically visible abnormalities to monogenic defects [Flint, 2001; Ropers, 2010; Tucker-Drob et al., 2013]. Intellectual disability is a genetically heterogeneous condition, and more than 700 genes have been identified to cause ID alone or as a part of the syndrome. Research in X-linked ID has identified more than 100 disease-causing genes on the X chromosome that play a role in cognition; however, research into autosomal causes of ID is still ongoing [Vissers et al., 2016].

8.
Front Bioeng Biotechnol ; 10: 1013354, 2022.
Article in English | MEDLINE | ID: mdl-36568300

ABSTRACT

Schistosomiasis is one of the neglected tropical diseases that affect millions of people worldwide. Globally, it affects economically poor countries, typically due to a lack of proper sanitation systems, and poor hygiene conditions. Currently, no vaccine is available against schistosomiasis, and the preferred treatment is chemotherapy with the use of praziquantel. It is a common anti-schistosomal drug used against all known species of Schistosoma. To date, current treatment primarily the drug praziquantel has not been effective in treating Schistosoma species in their early stages. The drug of choice offers low bioavailability, water solubility, and fast metabolism. Globally drug resistance has been documented due to overuse of praziquantel, Parasite mutations, poor treatment compliance, co-infection with other strains of parasites, and overall parasitic load. The existing diagnostic methods have very little acceptability and are not readily applied for quick diagnosis. This review aims to summarize the use of nanotechnology in the treatment, diagnosis, and prevention. It also explored safe and effective substitute approaches against parasitosis. At this stage, various nanomaterials are being used in drug delivery systems, diagnostic kits, and vaccine production. Nanotechnology is one of the modern and innovative methods to treat and diagnose several human diseases, particularly those caused by parasite infections. Herein we highlight the current advancement and application of nanotechnological approaches regarding the treatment, diagnosis, and prevention of schistosomiasis.

9.
Front Vet Sci ; 9: 1018872, 2022.
Article in English | MEDLINE | ID: mdl-36387413

ABSTRACT

Infections caused by helminths are responsible for severe public health problems and economic burden on continental scale. Well-timed and precise diagnosis of helminth infections is critical for taking by appropriate approaches for pathogen control. Circulating miRNAs are stable diagnostic tool for different diseases found in a variety of body fluid. As diagnostic biomarkers in infectious diseases, miRNAs detection in body fluids of helminth infected hosts is growing promptly. Uncovering miRNAs is a relatively new tool, used for early-stage detection of helminth infection from experimental or non-invasive clinical samples. miRNAs can be detected in body fluids such as serum, saliva, urine, and tissues of helminth infected host, mainly blood offering important benefits for diagnosis accurately. In this review, we discuss different characteristics of helminth parasite-derived circulating and EV miRNAs, supporting its potential uses in for helminth diagnosis and treatment efficiency.

10.
Vet Med Sci ; 8(6): 2655-2661, 2022 11.
Article in English | MEDLINE | ID: mdl-36253877

ABSTRACT

BACKGROUND: Mastitis in dairy cattle is a highly prevalent infectious disease, caused by various pathogens, mainly Staphylococcu aureus and Escherichia Coli, considerable economic loss worldwide. OBJECTIVES: The aim of this study was to evaluate the in vitro activity of Herbal plants used against S. aureus and E. coli bacteria which are the causative agents of mastitis. METHODS: Therefore, in this study we investigate the antimicrobial effect of plant to evaluate the in vitro antibacterial activity of squaw mint (Mentha pulegium L., Lamiaceae family), catnip (Nepeta cataria L., Lamiaceae), lemon balm (Melissa officinalis L., Lamiaceae), for mastitis treatment. Solutions prepared in fixed oils, against S. aureus and E. coli bacteria which are the main agents of mastitis. Isolation and antibiotic susceptibility analyses of milk samples taken from 100 subclinical mastitis dairy cows were performed. The antibacterial properties of the solutions were analysed by a disk diffusion method. RESULTS: In the bacterial isolation, S. aureus was determined 97.7% and E. coli 53.5% positive of cows with mastitis. Antibacterial susceptibility test of the Lemon balm extract and essential oil showed maximum zone of inhibition against S. aureus 30 µl (23 mm), followed by 20 µl (19 mm), E. coli (19 mm) and 10 µl (5-7 mm), of the same extract against the Gram-positive bacteria. The ethanol extracts show the similar activity against the Gram-negative bacteria at 30, 20, and 10 µl (18-20 mm). Followed by S. aureus, when the zone areas for the susceptible solutions (Lemon balm, and essential oil) and the control group were compared, determined that there was little difference between for S. aureus and E. coli. CONCLUSIONS: This study hence indicated that in vitro cultured plantlets of lemon balm and peppermint oil can be used as the alternative method for production of mastitis and cheap source its precursor with antimicrobial activities.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Oils, Volatile , Animals , Cattle , Female , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Staphylococcus aureus , Escherichia coli , Mastitis, Bovine/drug therapy , Mastitis, Bovine/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
11.
Front Mol Biosci ; 9: 981020, 2022.
Article in English | MEDLINE | ID: mdl-36090034

ABSTRACT

The molecular consequences of cancer associated mutations in Acute myeloid leukemia (AML) linked factors are not very well understood. Here, we interrogated the COSMIC database for missense mutations associated with the RUNX1 protein, that is frequently mis-regulated in AML, where we sought to identify recurrently mutated positions at the DNA-interacting interface. Indeed, six of the mutated residues, out of a total 417 residues examined within the DNA binding domain, evidenced reduced DNA association in in silico predictions. Further, given the prominence of RUNX1's compromised function in AML, we asked the question if the mutations themselves might alter RUNX1's interaction (off-target) with known FDA-approved drug molecules, including three currently used in treating AML. We identified several AML-associated mutations in RUNX1 that were calculated to enhance RUNX1's interaction with specific drugs. Specifically, we retrieved data from the COSMIC database for cancer-associated mutations of RUNX1 by using R package "data.table" and "ggplot2" modules. In the presence of DNA and/or drug, we used docking scores and energetics of the complexes as tools to evaluate predicted interaction strengths with RUNX1. For example, we performed predictions of drug binding pockets involving Enasidenib, Giltertinib, and Midostaurin (AML associated), as well as ten different published cancer associated drug compounds. Docking of wild type RUNX1 with these 13 different cancer-associated drugs indicates that wild-type RUNX1 has a lower efficiency of binding while RUNX1 mutants R142K, D171N, R174Q, P176H, and R177Q suggested higher affinity of drug association. Literature evidence support our prediction and suggests the mutation R174Q affects RUNX1 DNA binding and could lead to compromised function. We conclude that specific RUNX1 mutations that lessen DNA binding facilitate the binding of a number of tested drug molecules. Further, we propose that molecular modeling and docking studies for RUNX1 in the presence of DNA and/or drugs enables evaluation of the potential impact of RUNX1 cancer associated mutations in AML.

12.
Mol Biochem Parasitol ; 251: 111495, 2022 09.
Article in English | MEDLINE | ID: mdl-35835258

ABSTRACT

Schistosoma is a genus of trematodes causing schistosomiasis, a major neglected tropical disease infecting more than 240 million people and with 700 million people at the risk of infection in the tropical and subtropical regions of the world, especially low-income countries. For the elimination of the disease, accurate diagnostic tools are needed. Besides allowing early treatment, early detection prevents environmental contamination and in turn ensures safe water sources in the endemic areas. Cell-free DNA (cfDNA) biomarker detection is a relatively new tool, used for the diagnosis of schistosomiasis in the early stages of infection from non-invasive clinical or experimental samples. cfDNA can be detected in Schistosoma infected host body fluids such as urine, serum, saliva and tissues, mainly in blood offering significant benefits for accurate diagnosis. In the current review, we described different characteristics of cfDNA, evidencing and supporting its potential uses in Schistosoma diagnosis and the improvement of treatment effectiveness.


Subject(s)
Cell-Free Nucleic Acids , Schistosomiasis , Animals , Biomarkers , Humans , Schistosoma/genetics , Schistosomiasis/diagnosis , Serum
13.
Vet Med Sci ; 8(4): 1780-1786, 2022 07.
Article in English | MEDLINE | ID: mdl-35608149

ABSTRACT

Multidrug resistance among pathogenic bacteria is imperilling the worth of antibiotic infection, which has become an emerging problem, which previously transformed the veterinary sciences. Since its discovery, many antibiotics have been effective in treating bacterial infections in animals. Escherichia coli, a bacterium, is one of the reservoirs of antibiotic resistance genes in a community. The current use of antibiotics and demographic factors usually increase multidrug resistance. Genetically, the continuous adoption of environmental changes by E. coli allows it to acquire many multidrug resistance. During the host's life, antimicrobial resistance rarely poses a threat to the E. coli strain and pressure, similar to that of a flexible animal lower intestine. In this review, we describe the E. coli antibiotic drug-resistance mechanism driving transmission, the causes of transmission and the harmful effects on animal health.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Anti-Bacterial Agents/adverse effects , Drug Resistance, Microbial , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary
14.
Materials (Basel) ; 15(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35160675

ABSTRACT

Due to the rapid increase in population, the use of automobile vehicles increases day by day, which causes a considerable increase in the waste tires produced worldwide. Research studies are in progress to utilize scrap tires and waste rubber material in several fields to cater the pollution problems in a sustainable and environmentally friendly manner. In this research, the shredded waste tires were used in concrete to replace fine aggregates in different percentages. The fine aggregates in the rubberized concrete were replaced 10%, 15%, and 20% by rubber. The stress-strain behavior of the concrete models is then determined and compared with the already established analytical models, i.e., Modified Kent and Park Model, Mander's model, and Razvi and Saatcioglu Model. A total of 12 standard concrete cylinders and 18 models of each type of concrete, i.e., normal concrete, reinforced rubberized concrete with 10%, 15%, and 20% addition of rubber, were fabricated. Specimens fabricated in each replacement of rubber were laterally confined, employing 3 in (76 mm) and 6 in (152 mm) c/c tie spacing. The model and cylinders were subjected to uni-axial compression tests using Universal Testing Machine (UTM). The drop in compressive strength, stress-strain constitutive law, strain limits, and overall behavior of the rubberized reinforced concrete were explored experimentally. The results were then compared with the analytical results of the established models. The research can help explore the possible future for the use of rubberized concrete for the potential application as a structural material.

15.
PLoS One ; 17(1): e0262952, 2022.
Article in English | MEDLINE | ID: mdl-35089940

ABSTRACT

The uropathogens is the main cause of urinary tract infection (UTI). The aim of the study was to isolate bacteria from urine samples of UTI patients and find out the susceptibility of isolated bacteria. Bacteria were identified using both conventional and molecular methods. Sanger sequence procedure used for 16S ribosomal RNA and phylogenetic analysis was performed using Molecular Evolutionary Genetics Analysis (MEGA-7) software. In this study, Escherichia coli, Klebsiella pneumonia, Staphylococcus were reported as 58, 28 and 14.0% respectively. Phylogenetic tree revealed that 99% of sample No. Ai (05) is closely related to E. coli to (NR 114042.1 E. coli strain NBRC 102203). Aii (23) is 99% similar to K. pneumoniae to (NR 117686.1 K. pneumonia strain DSM 30104) and 90% Bi (48) is closely linked to S. aureus to (NR 113956.1 S. aureus strain NBRC 100910). The antibiotic susceptibility of E. coli recorded highest resistance towards ampicillin (90%) and least resistant to ofloxacin (14%). Some of the other antibiotics such amoxicillin, ciprofloxacin, gentamicin, ceftazidime, cefuroxime and nitrofurantoin resistance were observed 86, 62, 24, 55, 48 and 35% respectively. The cefuroxime showed the highest antibiotic resistance against K. pneumoniae with 85% followed by amoxicillin, ciprofloxacin, gentamicin, ceftazidime, ampicillin and nitrofurantoin resulted in 60, 45, 67, 70, 75 and 30% respectively. The resistance of S. aureus against erythromycin, cefuroxime and ampicillin were found with 72%. The resistance against amoxicillin, gentamicin, ceftazidime and ceftriaxone found 57, 43, 43 and 15% respectively. Phylogenetic analysis shows that sequences are closely related with the reference sequences and E. coli is the dominant bacteria among UTI patients and is resistant to the commercially available antibiotics.


Subject(s)
Bacteria , Bacterial Infections , Drug Resistance, Bacterial/genetics , Phylogeny , Urinary Tract Infections , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Bacterial Infections/genetics , Bacterial Infections/microbiology , Female , Humans , Male , Microbial Sensitivity Tests , Urinary Tract Infections/genetics , Urinary Tract Infections/microbiology
16.
J Basic Microbiol ; 62(2): 95-108, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34878177

ABSTRACT

Hot springs ecosystem is the most ancient continuously inhabited ecosystem on earth which harbors diverse thermophilic bacteria and archaea distributed worldwide. Life in extreme environments is very challenging so there is a great potential biological dark matter and their adaptation to harsh environments eventually producing thermostable enzymes which are very vital for the welfare of mankind. There is an enormous need for a new generation of stable enzymes that can endure harsh conditions in industrial processes and can either substitute or complement conventional chemical processes. Here, we review at the variety and distribution of thermophilic microbes, as well as the different thermostable enzymes that help them survive at high temperatures, such as proteases, amylases, lipases, cellulases, pullulanase, xylanases, and DNA polymerases, as well as their special properties, such as high-temperature stability. We have documented the novel isolated thermophilic and hyperthermophilic microorganisms, as well as the discovery of their enzymes, demonstrating their immense potential in the scientific community and in industry.


Subject(s)
Cellulases , Ecosystem , Archaea/genetics , Biotechnology , Hot Temperature
17.
Turk J Biol ; 45(5): 588-598, 2021.
Article in English | MEDLINE | ID: mdl-34803456

ABSTRACT

Bex2 is well known for its role in the nervous system, and is associated with neurological disorders, but its role in the lung's physiology is still not reported. To elucidate the functional role of Bex2 in the lung, we generated a Bex2 knock-out (KO) mouse model using the CRISPR-Cas9 technology and performed transcriptomic analysis. A total of 652 genes were identified as differentially expressed between Bex2 -/- and Bex2 +/+ mice, out of which 500 were downregulated, while 152 were upregulated genes. Among these DEGs, Ucp1, Myh6, Coxa7a1, Myl3, Ryr2, RNaset2b, Npy, Enob1, Krt5, Myl2, Hba-a2, and Nrob2 are the most prominent genes. Myl2, was the most downregulated gene, followed by Npy, Hba-a2, Rnaset2b, nr0b2, Klra8, and Ucp1. Tcte3, Eno1b, Zfp990, and Pcdha9 were the most upregulated DEGs. According to gene enrichment analysis, PPAR pathway, cardiac muscle contraction, and cytokine-cytokine receptor interaction were the most enriched pathways. Besides, the nuclear factor-κB signaling pathway and hematopoietic cell linage pathways were also enriched. Chronic obstructive pulmonary disease (COPD) is enriched among KEGG disease pathways. RT-qPCR assays confirmed the RNA-Seq results. This study opens a new window toward the biological functions of Bex2 in different systems.

18.
J Cell Mol Med ; 25(18): 8701-8714, 2021 09.
Article in English | MEDLINE | ID: mdl-34342123

ABSTRACT

To improve the recapitulative quality of human pluripotent stem cell (hPSC) differentiation, we removed exogenous haematopoietic cytokines from the defined differentiation system. Here, we show that endogenous stimuli and VEGF are sufficient to induce robust hPSC-derived haematopoiesis, intensive generation of haematopoietic progenitors, maturation of blood cells and the emergence of definitive precursor cells including those that phenotypically identical to early human embryonic haematopoietic stem cells (HSCs). Moreover, the cytokine-free system produces significantly higher numbers of haematopoietic progenitors compared to the published protocols. The removal of cytokines revealed a broad developmental potential of the early blood cells, stabilized the hPSC-derived definitive precursors and led to spontaneous activation of inflammatory signalling. Our cytokine-free protocol is simple, efficient, reproducible and applicable for embryonic stem cells (ESCs) and induced PSCs. The spectrum of recapitulative features of the novel protocol makes the cytokine-free differentiation a preferred model for studying the early human haematopoietic development.


Subject(s)
Cytokines/metabolism , Embryonic Stem Cells , Hematopoiesis , Hematopoietic Stem Cells , Pluripotent Stem Cells , Cell Differentiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism
19.
Vet Med Sci ; 7(5): 2061-2067, 2021 09.
Article in English | MEDLINE | ID: mdl-33949142

ABSTRACT

Aloe vera is reputed to have medicinal properties. For centuries, it has been used for an array of ailments such as mild fever, wounds and burns, gastrointestinal disorders, diabetes, sexual vitality and fertility problems to cancer, immune modulation, AIDS and various skin infections. In present study, antibacterial activity of aloe vera gel extracts was tested against some common skin infection pathogens, that is, Escherichia coli, Shigella, Salmonella spp. and Staphylococcus aureus all were recorded positive. Antibiotic resistance and susceptibility pattern of above isolates were also studied against 10 clinically significant antibiotics (ampicillin [AMC], amoxicillin, augmentin, cefotaxime, ceftazidime [CAZ], cefuroxime [CXM], ciprofloxaci, tetracycline, cefpodoxime and imipenem). AMC and CXM were found to be most effective antibiotic followed by CXM with highest efficacy against Gram-negative bacteria. In case of CAZ showed highest efficacy was showed against Gram-positive bacteria. Aloe vera leave gel was extracted with four different solvent-like aloe vera leaf extract, root extract, leaf ethanol extract and root ethanol extract; however, Gram-negative as well Gram-positive isolates was found highest susceptibility with aloe leaf and aloe root ethanol extract. Moderate sensitivity observed with aloe leaf extract and aloe root extract against both Gram-positive as well as Gram-negative bacterial isolates. This result showed that ethanol extracts of aloe vera both leaf and root can be used alongside conventional antibiotics to fight agents of infections that are so prevalent in the skin infection.


Subject(s)
Aloe , Anti-Bacterial Agents , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Plant Extracts , Skin Diseases, Bacterial/microbiology , Aloe/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Escherichia coli , Plant Extracts/pharmacology , Staphylococcal Infections/veterinary
20.
Acta Trop ; 217: 105851, 2021 May.
Article in English | MEDLINE | ID: mdl-33524382

ABSTRACT

Schistosomiasis is a severe chronic disease caused by parasitic worms of the genus Schistosoma. Recent studies indicate that schistosomes can secrete extracellular vesicles (EVs), which play important regulatory roles in many biological processes. However, the mechanisms underlying EV biogenesis in schistosomes are poorly understood. In this study, we performed bioinformatic analyses and identified several genes putatively involved in EV biogenesis in Schistosoma japonicum, which were then confirmed by PCR. Quantitative transcriptional profiles of the selected genes indicated that they were differentially expressed in male and female worms as well as in the different developmental stages of S. japonicum. Thus, the highest expression of VAMP3 was detected in cercariae, whereas that of ARF6 was detected in eggs. RAB11A and the Syntenin-encoding gene SDCBP were highly expressed in 14-day schistosomula and VPS4A and RAB27A were highly expressed in 35-day-old adult schistosomes. The expression of RAB11A, CHMP4C, VPS4A, and SDCBP was higher in male worms, whereas that of ARF6, VAMP3, and RAB27A was higher in female worms. Our results are expected to provide important clues for understanding the role of EV biogenesis in S. japonicum development.


Subject(s)
Extracellular Vesicles/genetics , Organelle Biogenesis , Schistosoma japonicum/growth & development , Schistosoma japonicum/genetics , Schistosomiasis/parasitology , Transcriptome , Animals , Biological Phenomena , DNA, Protozoan , Extracellular Vesicles/metabolism , Female , Humans , Life Cycle Stages/genetics , Male , Mice , Mice, Inbred BALB C , Ovum/metabolism , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...