Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(1): 211-221, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38173605

ABSTRACT

A hydrogel membrane was prepared using activated carbon and sodium dodecyl sulphate modified montmorillonite clay incorporated into sodium alginate polymer. The activated carbon was prepared from a locally available susbine plant. The physiochemical characteristics of the synthesized hydrogel membrane were investigated using FTIR, SEM, EDX, and TGA techniques. The performance of the membrane was evaluated as an adsorbent by methyl red adsorption from water. The adsorption behavior of the hydrogel membrane was investigated under varying conditions of pH (2-10), membrane dose (0.0025-0.015 mg g-1), equilibrium adsorption time (30-360 minutes), solution temperature (25-45 °C) and dye concentration (100-500 mg L-1). The maximum adsorption capacity of the hydrogel membrane was 248.13 mg g-1. The kinetics of methyl red adsorption on hydrogel membrane best followed the pseudo-second order (PSO). The equilibrium adsorption results suggested that it obeyed the Freundlich isotherm very closely (R2 = 0.994). The thermodynamics of methyl red adsorption on the hydrogel membrane revealed that the adsorption was spontaneous (ΔS° = 16.15 kJ K-1 mol-1), favorable (ΔG° = -3.51 kJ mol-1), and endothermic (ΔH° = -1.48 kJ mol-1) in nature. These investigations suggested that the fabricated hydrogel membrane could be suitably used for methyl red adsorption from the solution.

2.
Sci Rep ; 13(1): 21663, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066017

ABSTRACT

Microgrids are power distribution systems that can operate either in a grid-connected configuration or in an islanded manner, depending on the availability of decentralized power resources, such as sustainable or non-sustainable power sources, battery backup systems, and power demands. The extensive adoption of inverter-based systems poses numerous technological challenges, necessitating a centralized management system to assure the system reliability and monitoring of the energy delivery networks. Thus, this research begins by highlighting these significant obstacles and then analyzes the present-day advances in multilevel control architecture for delivering on promised functionality. This article also discusses the development of innovative control technologies, such as introducing collaborative distributed approaches and reducing conventional three-stage patriarchal administration to fewer stages of system integration and functioning.

3.
J Electr Bioimpedance ; 14(1): 32-46, 2023 Jan.
Article in English | MEDLINE | ID: mdl-38025910

ABSTRACT

Electrosurgical generators (ESG) are widely used in medical procedures to cut and coagulate tissue. Accurate control of the output power is crucial for surgical success, but can be challenging to achieve. In this paper, a novel expert knowledge-based peak current mode controller (EK-PCMC) is proposed to regulate the output power of an ESG. The EK-PCMC leverages expert knowledge to adapt to changes in tissue impedance during surgical procedures. We compared the performance of the EK-PCMC with the classical peak current mode controller (PCMC) and fuzzy PID controller. The results demonstrate that the EK-PCMC significantly outperformed the PCMC, reducing the integral square error (ISE) and integral absolute error (IAE) by a factor of 3.88 and 4.86, respectively. In addition, the EK-PCMC outperformed the fuzzy PID controller in terms of transient response and steady-state performance. Our study highlights the effectiveness of the proposed EK-PCMC in improving the regulation of the output power of an ESG and improving surgical outcomes.

4.
Sci Rep ; 13(1): 7235, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142579

ABSTRACT

Nanosized inorganic oxides have the trends to improve many characteristics of solid polymer insulation. In this work, the characteristics of improved poly (vinyl chloride) (PVC)/ZnO are evaluated using 0, 2, 4 and 6 phr of ZnO nanoparticles dispersed in polymer matrix using internal mixer and finally compressed into circular disk with 80 mm diameter using compression molding technique. Dispersion properties are studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and optical microscopy (OM). The effect of filler on the electrical, optical, thermal, and dielectric properties of the PVC are also analyzed. Hydrophobicity of nano-composites is evaluated by measuring contact angle and recording hydrophobicity class using Swedish transmission research institute (STRI) classification method. Hydrophobic behavior decreases with the increase in filler content; contact angle increases up to 86°, and STRI class of HC3 for PZ4 is observed. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are employed to evaluate the thermal properties of the samples. Also, continuous decrease of optical band gap energy from 4.04 eV for PZ0 to 2.57 eV for PZ6 is observed. In the meantime, an enhancement in the melting temperature, Tm, is observed from 172 to 215 °C. To check the stability of materials against hydrothermal stresses, all the fabricated materials are then subjected to a hydrothermal aging process for 1000 h and their structural stability is analyzed using optical microscopy and FTIR analyses.

5.
Math Biosci Eng ; 20(2): 1599-1616, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36899500

ABSTRACT

The regenerative braking in the tram allows the energy to be returned to the power grid through a power inverter. Since the inverter location between the tram and the power grid is not fixed, resulting in a wide variety of impedance networks at grid coupling points, posing a severe threat to the stable operation of the grid-tied inverter (GTI). By independently changing the loop characteristics of the GTI, the adaptive fuzzy PI controller (AFPIC) can adjust according to different impedance network parameters. It is challenging to fulfill the stability margin requirements of GTI under high network impedance since the PI controller has phase lag characteristics. A correction method of series virtual impedance is proposed, which connects the inductive link in a series configuration with the inverter output impedance, correcting the inverter equivalent output impedance from resistance-capacitance to resistance-inductance and improving the system stability margin. Feedforward control is adopted to improve the system's gain in the low-frequency band. Finally, the specific series impedance parameters are obtained by determining the maximum network impedance and setting the minimum phase margin of 45°. The realization of virtual impedance is simulated by conversion to an equivalent control block diagram, and the effectiveness and feasibility of the proposed method are verified by simulation and a 1 kW experimental prototype.

6.
Nanomaterials (Basel) ; 12(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36432297

ABSTRACT

The nitrogenated holey two-dimensional carbon nitride (C2N) has been efficaciously utilized in the fabrication of transistors, sensors, and batteries in recent years, but lacks application in the photovoltaic industry. The C2N possesses favorable optoelectronic properties. To investigate its potential feasibility for solar cells (as either an absorber layer/interface layer), we foremost detailed the numerical modeling of the double-absorber-layer−methyl ammonium lead iodide (CH3NH3PbI3) −carbon nitride (C2N) layer solar cell and subsequently provided in-depth insight into the active-layer-associated recombination losses limiting the efficiency (η) of the solar cell. Under the recombination kinetics phenomena, we explored the influence of radiative recombination, Auger recombination, Shockley Read Hall recombination, the energy distribution of defects, Band Tail recombination (Hoping Model), Gaussian distribution, and metastable defect states, including single-donor (0/+), single-acceptor (−/0), double-donor (0/+/2+), double-acceptor (2/−/0−), and the interface-layer defects on the output characteristics of the solar cell. Setting the defect (or trap) density to 1015cm−3 with a uniform energy distribution of defects for all layers, we achieved an η of 24.16%. A considerable enhancement in power-conversion efficiency ( η~27%) was perceived as we reduced the trap density to 1014cm−3 for the absorber layers. Furthermore, it was observed that, for the absorber layer with double-donor defect states, the active layer should be carefully synthesized to reduce crystal-order defects to keep the total defect density as low as 1017cm−3 to achieve efficient device characteristics.

7.
Polymers (Basel) ; 14(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36235875

ABSTRACT

Polymeric insulators have replaced ceramic insulators due to their obvious properties like low surface energy, which exhibits good hydrophobic performance, low weight, etc. However, electric utilities have concerns about their long-term performance. In that context, the long-term performance of two different types of polymeric insulators are investigated in this study: thermoset Silicone rubber (SiR) and thermoplastic elastomeric (TPE). Multi-stress aging was performed in the different orientations of both types of polymeric insulators. During multi-stress aging, insulators are exposed to varied loads in both vertical and horizontal orientations, simulating actual service environmental conditions. Experiments were done in a chamber where different types of stresses were simulated, which resembles the weathering conditions of Hattar, Pakistan, which is one of the most polluted industrial zones. Both insulators were stressed in a chamber under the designed weathering conditions for two years and six months at different orientations. Polymeric insulators made of SiR perform better in the vertical position than that in the horizontal position. Furthermore, the experimental results show that both materials are capable in a variety of situations. SiR, on the other hand, performed well due to its high hydrophobicity, which means it is less impacted by contaminants and hence has a longer life and higher service performance than TPE.

8.
Sensors (Basel) ; 22(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36236466

ABSTRACT

An automotive supply chain includes a range of activities from the concept of the product to its final transfer to a customer and subsequent vehicle maintenance. The three distinct stages of this chain are production, sales, and maintenance. In many countries, automobile records are not available to the public and anyone who has access to the central database or government systems can tamper with these records. In addition, used vehicle maintenance and transfer histories remain unavailable or inaccessible. These issues can be overcome by incorporating state-of-the-art blockchain technology into automotive supply chain management. Blockchain technology uses a chain of blocks for distributed transfer and storage of information, creating a decentralized data register that makes records of any digital asset tamper-proof and transparent. In this paper, we implement a permissioned blockchain-based framework for secure and efficient supply chain management of the automobile industry. We employed Hyperledger Fabric; an enterprise-grade distributed ledger platform for developing solutions. In our solution, the blockchain is customized and private in order to ensure system security. We evaluated our system in terms of memory cost, monetary cost, and speed of execution. Our results demonstrate that only 346 MB of extra memory space is required for storing the automotive data of 1 million users, thus rendering the memory cost negligible. The monetary cost is insignificant as all open source blockchain resources are employed, and the speed of record update is also fast. Our results also show that the decentralization of the automotive supply chain using blockchain can implement system security with minor modifications in the established configuration of the web application database.

9.
Sensors (Basel) ; 22(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36236648

ABSTRACT

Multi-target tracking (MTT) generally needs either a Doppler radar network with spatially separated receivers or a single radar equipped with costly phased array antennas. However, Doppler radar networks have high computational complexity, attributed to the multiple receivers in the network. Moreover, array signal processing techniques for phased array radar also increase the computational burden on the processing unit. To resolve this issue, this paper investigates the problem of the detection and tracking of multiple targets in a three-dimensional (3D) Cartesian space based on range and 3D velocity measurements extracted from dual-orthogonal baseline interferometric radar. The contribution of this paper is twofold. First, a nonlinear 3D velocity measurement function, defining the relationship between the state of the target and 3D velocity measurements, is derived. Based on this measurement function, the design of the proposed algorithm includes the global nearest neighbor (GNN) technique for data association, an interacting multiple model estimator with a square-root cubature Kalman filter (IMM-SCKF) for state estimation, and a rule-based M/N logic for track management. Second, Monte Carlo simulation results for different multi-target scenarios are presented to demonstrate the performance of the algorithm in terms of track accuracy, computational complexity, and IMM mean model probabilities.

10.
Sensors (Basel) ; 22(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36236701

ABSTRACT

Network Function Virtualization (NFV) offers an alternate method to design, deploy and manage network services. The NFV decouples network functions from the dedicated hardware and moves them to the virtual servers so that they can run in the software. One of the major strengths of the NFV is its ability to dynamically extend or reduce resources allocated to Virtual Network Functions (VNF) as needed and at run-time. There is a need for a comprehensive metering component in the cloud to store and process the metrics/samples for efficient auto-scaling or load-management of the VNF. In this paper, we propose an integrating framework for efficient auto-scaling of VNF using Gnocchi; a time-series database that is integrated within the framework to store, handle and index the time-series data. The objective of this study is to validate the efficacy of employing Gnocchi for auto-scaling of VNF, in terms of aggregated data points, database size, data recovery speed, and memory consumption. The employed methodology is to perform a detailed empirical analysis of the proposed framework by deploying a fully functional cloud to implement NFV architecture using several OpenStack components including Gnocchi. Our results show a significant improvement over the legacy Ceilometer configuration in terms of lower metering storage size, less memory utilization in processing and management of metrics, and reduced time delay in retrieving the monitoring data to evaluate alarms for the auto-scaling of VNF.


Subject(s)
Computers , Software
11.
Chemosphere ; 309(Pt 1): 136623, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36183883

ABSTRACT

In this research work, a novel composite membrane was synthesized from activated carbon (AC) derived from sesban, sodium benzyl dodycyel sulphate (SBDS) treated montmorillonite (MMT) clay and alginate (alg) for the adsorption of methylene-blue (MB) dye. The AC-MMT-alg composite membranes were characterized using analytical characterizations such as FTIR, SEM, EDX and TGA analysis. Several important factors like initial solution pH, contact time, membrane dose, MB concentrations and temperature effect on the adsorption efficiency of membrane were investigated. MB dye adsorption on the synthesized membrane was explained well by pseudo second order equation. Isotherm study showed that MB adsorption data followed Langmuir adsorption isotherm model. The adsorption capacity of membrane for MB was 1429 mg/g from aqueous solution. Thermodynamic study confirmed endothermic and spontaneous MB adsorption on the adsorbent. The mechanistic path way indicated that electrostatic forces were involved in this adsorption process. The synthesized membrane proved an efficient adsorbent for MB adsorption from aqueous media.


Subject(s)
Methylene Blue , Water Pollutants, Chemical , Adsorption , Alginates/chemistry , Bentonite/chemistry , Charcoal/chemistry , Clay , Hydrogen-Ion Concentration , Kinetics , Methylene Blue/chemistry , Sodium , Sulfates , Surface-Active Agents , Water
12.
Micromachines (Basel) ; 13(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36014171

ABSTRACT

Enhanced bandwidth issues for 5G system are fruitfully resolved by organizing free space optics (FSO) communication frameworks. The high bandwidth, the maximum number of channel transmission requirements, and high data rate have been boosted during the last years because of the COVID-19 pandemic. The online services and digital applications have increased pressure on installed optical network models. In addition, the optical networks with high capacity transmission produce nonlinear distortions, which degrade system efficiency. This paper presents a mixed FSO and fiber network to tackle the factors of nonlinearities and enrich the system capacity and range. Furthermore, the issues related to radio frequency, FSO pointing, and co-channel interference are considered in this work. The theoretical and simulation structures are validated using advanced measuring parameters, such as bit error rate (BER), peak to average power ratio (PAPR), cumulative distribution function (CDF), and outage probability. The nonlinear factors are addressed successfully, and the capacity is developed from current models. Finally, the proposed model's limitations and future direction are discussed in this paper.

13.
Micromachines (Basel) ; 13(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35888902

ABSTRACT

This paper examines the design and analysis of DC-DC converters for high-power and low-voltage applications such as renewable energy sources (RESs) and comparisons between converters based on switch stresses and efficiency. The RESs including photovoltaic arrays and fuel cell stacks must have enhanced output voltages, such as 380 V DC in the case of a full bridge inverter or 760 V DC in the case of a half bridge inverter, in order to interface with the 220 V AC grid-connected power system. One of the primary difficulties in developing renewable energy systems is enhancing DC-DC converters' efficiency to enable high step-up voltage conversion with high efficiency and low voltage stress. In the present work, the efficiency, current, and voltage stress of switches of an isolated Flyback boost converter, simple DC-DC Boost converter, and an Interleaved boost converter, are explored and studied relatively. The most suitable and optimized options with a high efficiency and low switching stress are investigated. The more suitable topology is designed and analyzed for the switch technology based on the Silicon-Metal Oxide Semiconductor Field Effect Transistor (Si-MOSFET) and the Gallium Nitride-High Electron Mobility Transistor (GaN-HEMT). The Analytical approach is analyzed in this paper based on efficiency and switching stress. It is explored that GaN HEMT based Flyback boost converter is the best. Finally, the future direction for further improving the efficiency of the proposed boost converter is investigated.

14.
Math Biosci Eng ; 19(2): 1332-1354, 2022 01.
Article in English | MEDLINE | ID: mdl-35135206

ABSTRACT

A mechanical ventilator is an important medical equipment that assists patients who have breathing difficulties. In recent times a huge percentage of COVID-19 infected patients suffered from respiratory system failure. In order to ensure the abundant availability of mechanical ventilators during COVID-19 pandemic, most of the manufacturers around the globe utilized open source designs. Patients safety is of utmost importance while using mechanical ventilators for assisting them in breathing. Closed loop feedback control system plays vital role in ensuring the stability and reliability of dynamical systems such as mechanical ventilators. Ideal characteristics of mechanical ventilators include safety of patients, reliability, quick and smooth air pressure buildup and release.Unfortunately most of the open source designs and mechanical ventilator units with classical control loops cannot achieve the above mentioned ideal characteristics under system uncertainties. This article proposes a cascaded approach to formulate robust control system for regulating the states of ventilator unit using blower model reduction techniques. Model reduction allows to cascade the blower dynamics in the main controller design for airway pressure. The proposed controller is derived based on both integer and non integer calculus and the stability of the closed loop is ensured using Lyapunov theorems. The effectiveness of the proposed control method is demonstrated using extensive numerical simulations.


Subject(s)
COVID-19 , Pandemics , Humans , Reproducibility of Results , SARS-CoV-2 , Ventilators, Mechanical
15.
ISA Trans ; 122: 49-62, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33965202

ABSTRACT

Extended state observer acting as a popular tool can estimate the system states and total disturbances simultaneously. However, for extended-state-observer-based control of high-order nonlinear systems, there are still some difficult issues to solve, such as how to simultaneously reject matched and mismatched model uncertainties with strict theoretical proof, especially in the case of output feedback, "explosion of complexity" and so on. Motivated by these reasons, different control schemes in full-state feedback and output feedback conditions respectively will be integrated via the filter-based backstepping approach for saturated nonlinear systems. For the full-state feedback condition, adaptive neural network and extended state observer will be combined for each dynamic to handle the unknown nonlinear dynamics and external disturbances, respectively. For the output feedback condition, nonlinear disturbance observer design will be incorporated into the neural-network-based extended state observer scheme to handle mismatched disturbances at the same time. In particular, an auxiliary system will be constructed to compensate for the saturation influence. Moreover, the anticipate control effects of the developed controllers have been demonstrated by contrastive results for a hydraulic servo system.


Subject(s)
Neural Networks, Computer , Nonlinear Dynamics , Computer Simulation , Feedback , Uncertainty
16.
Math Biosci Eng ; 19(12): 12031-12057, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36653985

ABSTRACT

The growth of distributed generation significantly reduces the synchronous generators' overall rotational inertia, causing large frequency deviation and leading to an unstable grid. Adding virtual rotational inertia using virtual synchronous generators (VSG) is a promising technique to stabilize grid frequency. Due to coupled nature of frequency and active output power in a grid-tied virtual synchronous generator (GTVSG), the simultaneous design of transient response and steady state error becomes challenging. This paper presents a duplex PD inertial damping control (DPDIDC) technique to provide active power control decoupling in GTVSG. The power verses frequency characteristics of GTVSG is analyzed emphasizing the inconsistencies between the steady-state error and transient characteristics of active output power. The two PD controllers are placed in series with the generator's inertia forward channel and feedback channel. Finally, the performance superiority of the developed control scheme is validated using a simulation based study.


Subject(s)
Computer Simulation , Electrodes , Feedback
17.
Polymers (Basel) ; 13(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34771190

ABSTRACT

Among the polymeric family, high-temperature-vulcanized silicone rubber (HTV-SR) is the most deployed material for high voltage insulation applications. However, in an outdoor environment, due to contamination and wetting-induced dry band arcing, consequently SR experiences surface tracking and erosion. From a practical standpoint, the tracking and erosion performance under multi-stress aging is required to be known. It is in that context that the present study was undertaken to measure and analyze the effect of multi-stress aging on tracking and erosion performance. Composite samples of SR having different filler concentrations of silica and alumina trihydroxide (ATH) were aged in a multi-stress chamber for a period of 5000 h, and after that their electrical tracking performance was studied. Simultaneously, unaged samples were also exposed to tracking test for comparison. To conduct this test, the inclined plane testing technique was used in accordance with IEC-60587. All samples exposed to tracking test were analyzed using different diagnostic and measuring techniques involving surface leakage current measurement, Fourier transform infrared spectroscopy (FTIR), thermal stability and hydrophobicity classification. Experimental results shown that the tracking lifetime increased through incorporation of silica and ATH fillers in the SR. Amongst all test samples, two samples designated as filled with 2% nano silica and 20% micro silica/ATH exhibited greater resistance to tracking. This was attributed to the optimum loading as well as better dispersion of the fillers in the polymer matrix. The presence of nano-silica enhanced time-to-tracking failure, owing to both improved thermal stability and enhanced shielding effect on the surface of nanocomposite insulators.

18.
PLoS One ; 16(11): e0258909, 2021.
Article in English | MEDLINE | ID: mdl-34784368

ABSTRACT

Skid-steered vehicles (SSV) are gaining huge importance in the market due to their applications like construction, agricultural work, material handling etc. The accuracy of performing such tasks require a robust control algorithm. The design of such controller is very challenging task due to external disturbances caused by wheel-ground interaction and aerodynamic effects. This paper proposes robust fractional and integral order fuzzy sliding mode controllers (FSMC, FFSMC) for a skid-steered vehicles with varying coefficient of friction and a displaced center of gravity (CG). FFSMC controller reduces the outcome of forces generated as a result of ground tire interaction during skidding and friction variations. The proposed controllers are implemented for a four-wheel SSV under high-speed turning motion. A simulation environment is constructed by implementing the SSV dynamics with wheel-road model and the performance of the proposed algorithms is tested. The simulation test is conducted for a Pioneer-3AT (P-3AT) robot SSV vehicle with displaced CG and variable coefficient of tires friction. Simulation results demonstrate the efficiency of the proposed FFSMC algorithm in term of reduced state errors and minimum chattering. The proposed controller compensates the effect of different responses of the wheels generated as a result of variable CG. The chattering phenomenon generated by conventional SMCs is also minimized by fuzzy tuning approach.


Subject(s)
Friction , Fuzzy Logic , Motor Vehicles , Computer Simulation , Models, Theoretical , Robotics , Torque
19.
Polymers (Basel) ; 13(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34577924

ABSTRACT

Degradation of silicon rubber due to heat and humidity affect its performance in outdoor applications. To analyze the effects of high temperature and humidity on room temperature vulcanized (RTV) silicone rubber (SiR) and its composites, this study was performed. Five different sample compositions including neat silicone rubber (nSiR), microcomposites (15 wt% silica(SMC 15% SiO2) and 15 wt% ATH(SMC 15% ATH), nanocomposite (2.5 wt% silica(SNC 2.5% SiO2) and hybrid composite (10 wt% micro alumina trihydrate with 2 wt% nano silica(SMNC 10% ATH 2% SiO2) were prepared and subjected to 70 ˚C temperature and 80% relative humidity in an environmental chamber for 120 h. Contact angle, optical microscopy and Fourier transform infrared (FTIR) spectroscopy were employed to analyze the recovery properties before and after applying stresses. Different trends of degradation and recovery were observed for different concentrations of composites. Addition of fillers improved the overall performance of composites and SMC 15% ATH composite performed better than other composites. For high temperature and humidity, the ATH-based microcomposite was recommended over silica due to its superior thermal retardation properties of ATH. It has been proved that ATH filler is able to withstand high temperature and humidity.

20.
Polymers (Basel) ; 13(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34578049

ABSTRACT

The emergence of micro and nano-based inorganic oxide fillers with optimal filler-loadings further enhances the required insulation characteristics of neat epoxy. During manufacturing and service application, insulators and dielectrics face mechanical stresses which may alter their basic characteristics. Keeping this in mind, the facts' influence of mechanical stresses and fillers on dielectric properties of polymeric insulators of two epoxy/silica composites were fabricated and thoroughly analyzed for dielectric characteristics under ramped mechanical compressions relative to the unfilled sample. Before compression, epoxy nanocomposites exhibited responses having an average dielectric constant of 7.68 with an average dissipation factor of 0.18. After each compression, dielectric properties of all samples were analyzed. The dissipation factor and the dielectric constant trends of each sample are plotted against a suitable frequency range. It was observed that after the successive compressions up to 25 MPa, the dielectric properties of epoxy micro-silica composites were highly affected, having an average final dielectric constant of 9.65 times that of the uncompressed sample and a dissipation factor of 2.2 times that of the uncompressed sample, and these were recorded.

SELECTION OF CITATIONS
SEARCH DETAIL
...