Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37279135

ABSTRACT

The healthcare industry is one of the most vulnerable to cybercrime and privacy violations because health data is very sensitive and spread out in many places. Recent confidentiality trends and a rising number of infringements in different sectors make it crucial to implement new methods that protect data privacy while maintaining accuracy and sustainability. Moreover, the intermittent nature of remote clients with imbalanced datasets poses a significant obstacle for decentralized healthcare systems. Federated learning (FL) is a decentralized and privacy-protecting approach to deep learning and machine learning models. In this paper, we implement a scalable FL framework for interactive smart healthcare systems with intermittent clients using chest X-ray images. Remote hospitals may have imbalanced datasets with intermittent clients communicating with the FL global server. The data augmentation method is used to balance datasets for local model training. In practice, some clients may leave the training process while others join due to technical or connectivity issues. The proposed method is tested with five to eighteen clients and different testing data sizes to evaluate performance in various situations. The experiments show that the proposed FL approach produces competitive results when dealing with two distinct problems, such as intermittent clients and imbalanced data. These findings would encourage medical institutions to collaborate and use rich private data to quickly develop a powerful patient diagnostic model.

2.
J Cloud Comput (Heidelb) ; 11(1): 75, 2022.
Article in English | MEDLINE | ID: mdl-36345308

ABSTRACT

Android is the most widely used mobile platform, making it a prime target for malicious attacks. Therefore, it is imperative to effectively circumvent these attacks. Recently, machine learning has been a promising solution for malware detection, which relies on distinguishing features. While machine learning-based malware scanners have a large number of features, adversaries can avoid detection by using feature-related expertise. Therefore, one of the main tasks of the Android security industry is to consistently propose cutting-edge features that can detect suspicious activity. This study presents a novel feature representation approach for malware detection that combines API-Call Graphs (ACGs) with byte-level image representation. First, the reverse engineering procedure is used to obtain the Java programming codes and Dalvik Executable (DEX) file from Android Package Kit (APK). Second, to depict Android apps with high-level features, we develop ACGs by mining API-Calls and API sequences from Control Flow Graph (CFG). The ACGs can act as a digital fingerprint of the actions taken by Android apps. Next, the multi-head attention-based transfer learning method is used to extract trained features vector from ACGs. Third, the DEX file is converted to a malware image, and the texture features are extracted and highlighted using a combination of FAST (Features from Accelerated Segment Test) and BRIEF (Binary Robust Independent Elementary Features). Finally, the ACGs and texture features are combined for effective malware detection and classification. The proposed method uses a customized dataset prepared from the CIC-InvesAndMal2019 dataset and outperforms state-of-the-art methods with 99.27% accuracy.

3.
Sensors (Basel) ; 22(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35957440

ABSTRACT

Currently, Android apps are easily targeted by malicious network traffic because of their constant network access. These threats have the potential to steal vital information and disrupt the commerce, social system, and banking markets. In this paper, we present a malware detection system based on word2vec-based transfer learning and multi-model image representation. The proposed method combines the textual and texture features of network traffic to leverage the advantages of both types. Initially, the transfer learning method is used to extract trained vocab from network traffic. Then, the malware-to-image algorithm visualizes network bytes for visual analysis of data traffic. Next, the texture features are extracted from malware images using a combination of scale-invariant feature transforms (SIFTs) and oriented fast and rotated brief transforms (ORBs). Moreover, a convolutional neural network (CNN) is designed to extract deep features from a set of trained vocab and texture features. Finally, an ensemble model is designed to classify and detect malware based on the combination of textual and texture features. The proposed method is tested using two standard datasets, CIC-AAGM2017 and CICMalDroid 2020, which comprise a total of 10.2K malware and 3.2K benign samples. Furthermore, an explainable AI experiment is performed to interpret the proposed approach.


Subject(s)
Algorithms , Neural Networks, Computer , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...