Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 16934, 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37805636

ABSTRACT

The aim of present work is to apply the Caputo-Fabrizio fractional derivative in the constitutive equations of heat transfer. Natural convection flow of an unsteady second grade fluid over a vertical plate with exponential heating is discussed. The generalized Fourier law is substituted in temperature profile. A portion of the dimensionless factors are utilized to make the governing equations into dimensionless structures. The solutions for temperature and velocity profiles of Caputo-Fabrizio model are acquired through the Laplace transform method. These solutions are greatly affected through the variation of different dimensionless variables like Prandtl number, Grashof number, and second-grade fluid parameter. Finally, the influence of embedded parameters is shown by plotting graphs through Mathcad. From the graphical results it is concluded that, the temperature of the fluid decreases with the increasing values of the Prandtl number and Second grade fluid parameter and increases with the passage of time. The velocity of the fluid increases with increasing values of the Grashof number, second grade parameter and time while decreases with increasing values of fractional parameter and Prandtl number.

2.
Sensors (Basel) ; 20(7)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283800

ABSTRACT

Faults and failures are familiar case studies in centralized and decentralized tracking systems. The processing of sensor data becomes more severe in the presence of faults/failures and/or noise. Effective schemes have been presented for decentralized systems, in the presence of faults only. In some practical scenarios of systems, there are certain interruptions in addition to these faults. These interruptions may occur in the form of noise. However it is expected that the decision about the sensor data is difficult in the presence of noise. This is because the noise adversely affects the communication amongst sensors and the processing unit. More complexity is expected when there are faults and noise simultaneously. To deal with this problem, in addition to existing fault detection and isolation schemes, the Kalman filter is employed. Here, a generic discussion is provided, which is equally applicable to other situations. This work addresses various faults in the presence of noise for decentralized tracking systems. Local single faults and multiple faults in the presence of noise are the core issues addressed in this paper. The proposed work is comprised of a general scenario for a decentralized tracking system followed by a case study of a target tracking scenario with and without noise. The presented schemes are also tested for different types of faults. The proposed work presents effective tracking in the presence of noise and faults. The results obtained demonstrate the acceptable performance of the scheme of this work.

SELECTION OF CITATIONS
SEARCH DETAIL
...