Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ambio ; 33(4-5): 199-210, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15264598

ABSTRACT

The Rossby Centre Atmospheric Regional Climate Model (RCA2) is described and simulation results, for the present climate over Europe, are evaluated against available observations. Systematic biases in the models mean climate and climate variability are documented and key parameterization weaknesses identified. The quality of near-surface parameters is investigated in some detail, particularly temperature, precipitation, the surface energy budget and cloud cover. The model simulates the recent, observed climate and variability with a high degree of realism. Compensating errors in the components of the surface radiation budget are highlighted and the fundamental causes of these biases are traced to the relevant aspects of the cloud, precipitation and radiation parameterizations. The model has a tendency to precipitate too frequently at small rates, this has a direct impact on the simulation of cloud-radiation interaction and surface temperatures. Great care must be taken in the use of observations to evaluate high resolution RCMs, when they are forced by analyzed boundary conditions. This is particularly true with respect to precipitation and cloudiness, where observational uncertainty is often larger than the RCM bias.


Subject(s)
Climate , Models, Theoretical , Atmosphere , Computer Simulation , Europe , Rain , Seasons , Temperature
2.
Ambio ; 33(4-5): 211-20, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15264599

ABSTRACT

The Rossby Centre regional climate model (RCA2) has been integrated over the Arctic Ocean as part of the international ARCMIP project. Results have been compared to observations derived from the SHEBA data set. The standard RCA2 model overpredicts cloud cover and downwelling longwave radiation, during the Arctic winter. This error was improved by introducing a new cloud parameterization, which significantly improves the annual cycle of cloud cover. Compensating biases between clear sky downwelling longwave radiation and longwave radiation emitted from cloud base were identified. Modifications have been introduced to the model radiation scheme that more accurately treat solar radiation interaction with ice crystals. This leads to a more realistic representation of cloud-solar radiation interaction. The clear sky portion of the model radiation code transmits too much solar radiation through the atmosphere, producing a positive bias at the top of the frequent boundary layer clouds. A realistic treatment of the temporally evolving albedo, of both sea-ice and snow, appears crucial for an accurate simulation of the net surface energy budget. Likewise, inclusion of a prognostic snow-surface temperature seems necessary, to accurately simulate near-surface thermodynamic processes in the Arctic.


Subject(s)
Climate , Models, Theoretical , Arctic Regions , Atmosphere , Computer Simulation , Oceans and Seas , Rain , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...