Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Sci ; 12(34): 11484-11489, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34667552

ABSTRACT

Rapadocin is a novel rapamycin-inspired polyketide-tetrapeptide hybrid macrocycle that possesses highly potent and isoform-specific inhibitory activity against the human equilibrative nucleoside transporter 1 (hENT1). Rapadocin contains an epimerizable chiral center in phenylglycine and an olefin group, and can thus exist as a mixture of four stereoisomers. Herein, we report the first total synthesis of the four stereoisomers of rapadocin using two different synthetic strategies and the assignment of their structures. The inhibitory activity of each of the four synthetic isomers on both hENT1 and hENT2 was determined. It was found that the stereochemistry of phenylglycine played a more dominant role than the configuration of the olefin in the activity of rapadocin. These findings will guide the future design and development of rapadocin analogs as new modulators of adenosine signaling.

2.
Nat Chem ; 11(3): 254-263, 2019 03.
Article in English | MEDLINE | ID: mdl-30532015

ABSTRACT

Rapamycin and FK506 are macrocyclic natural products with an extraordinary mode of action, in which they form binary complexes with FK506-binding protein (FKBP) through a shared FKBP-binding domain before forming ternary complexes with their respective targets, mechanistic target of rapamycin (mTOR) and calcineurin, respectively. Inspired by this, we sought to build a rapamycin-like macromolecule library to target new cellular proteins by replacing the effector domain of rapamycin with a combinatorial library of oligopeptides. We developed a robust macrocyclization method using ring-closing metathesis and synthesized a 45,000-compound library of hybrid macrocycles (named rapafucins) using optimized FKBP-binding domains. Screening of the rapafucin library in human cells led to the discovery of rapadocin, an inhibitor of nucleoside uptake. Rapadocin is a potent, isoform-specific and FKBP-dependent inhibitor of the equilibrative nucleoside transporter 1 and is efficacious in an animal model of kidney ischaemia reperfusion injury. Together, these results demonstrate that rapafucins are a new class of chemical probes and drug leads that can expand the repertoire of protein targets well beyond mTOR and calcineurin.


Subject(s)
Drug Discovery/methods , Macrolides/chemistry , Macrolides/metabolism , Protective Agents/chemistry , Protective Agents/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Animals , Cell Line , Human Umbilical Vein Endothelial Cells , Humans , Mice , Proteome/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Sirolimus/chemistry , Sirolimus/metabolism , Swine , TOR Serine-Threonine Kinases/chemistry , TOR Serine-Threonine Kinases/metabolism , Tacrolimus/chemistry , Tacrolimus/metabolism , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism
3.
ACS Med Chem Lett ; 5(12): 1313-7, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25516790

ABSTRACT

APD334 was discovered as part of our internal effort to identify potent, centrally available, functional antagonists of the S1P1 receptor for use as next generation therapeutics for treating multiple sclerosis (MS) and other autoimmune diseases. APD334 is a potent functional antagonist of S1P1 and has a favorable PK/PD profile, producing robust lymphocyte lowering at relatively low plasma concentrations in several preclinical species. This new agent was efficacious in a mouse experimental autoimmune encephalomyelitis (EAE) model of MS and a rat collagen induced arthritis (CIA) model and was found to have appreciable central exposure.

4.
Bioorg Med Chem Lett ; 22(13): 4404-9, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22633692

ABSTRACT

Two series of fused tricyclic indoles were identified as potent and selective S1P(1) agonists. In vivo these agonists produced a significant reduction in circulating lymphocytes which translated into robust efficacy in several rodent models of autoimmune disease. Importantly, these agonists were devoid of any activity at the S1P(3) receptor in vitro, and correspondingly did not produce S1P(3) mediated bradycardia in telemeterized rat.


Subject(s)
Immunologic Factors/chemistry , Indoles/chemistry , Receptors, Lysosphingolipid/agonists , Animals , Autoimmune Diseases/drug therapy , Disease Models, Animal , Female , Humans , Immunologic Factors/pharmacokinetics , Immunologic Factors/therapeutic use , Indoles/pharmacokinetics , Indoles/therapeutic use , Lymphocytes/immunology , Male , Mice , Mice, Inbred C57BL , Microsomes/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Lysosphingolipid/metabolism , Structure-Activity Relationship
6.
J Med Chem ; 53(15): 5696-706, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20684606

ABSTRACT

Recent developments in sleep research suggest that antagonism of the serotonin 5-HT(2A) receptor may improve sleep maintenance insomnia. We herein report the discovery of a series of potent and selective serotonin 5-HT(2A) receptor antagonists based on a phenethylpiperazine amide core structure. When tested in a rat sleep pharmacology model, these compounds increased both sleep consolidation and deep sleep. Within this series of compounds, an improvement in the metabolic stability of early leads was achieved by introducing a carbonyl group into the phenethylpiperazine linker. Of note, compounds 14 and 27 exhibited potent 5-HT(2A) receptor binding affinity, high selectivity over the 5-HT(2C) receptor, favorable CNS partitioning, and good pharmacokinetic and early safety profiles. In vivo, these two compounds showed dose-dependent, statistically significant improvements on deep sleep (delta power) and sleep consolidation at doses as low as 0.1 mg/kg.


Subject(s)
Amides/chemical synthesis , Piperazines/chemical synthesis , Pyrazoles/chemical synthesis , Serotonin 5-HT2 Receptor Antagonists , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep/drug effects , Administration, Oral , Amides/pharmacokinetics , Amides/pharmacology , Animals , Biological Availability , Blood Proteins/metabolism , Brain/metabolism , Dogs , Drug Inverse Agonism , Haplorhini , Humans , Male , Microsomes, Liver/metabolism , Piperazines/pharmacokinetics , Piperazines/pharmacology , Protein Binding , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
7.
J Med Chem ; 53(11): 4412-21, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20455563

ABSTRACT

Serotonin, which is stored in platelets and is released during thrombosis, activates platelets via the 5-HT(2A) receptor. 5-HT(2A) receptor inverse agonists thus represent a potential new class of antithrombotic agents. Our medicinal program began with known compounds that displayed binding affinity for the recombinant 5-HT(2A) receptor, but which had poor activity when tested in human plasma platelet inhibition assays. We herein describe a series of phenyl pyrazole inverse agonists optimized for selectivity, aqueous solubility, antiplatelet activity, low hERG activity, and good pharmacokinetic properties, resulting in the discovery of 10k (APD791). 10k inhibited serotonin-amplified human platelet aggregation with an IC(50) = 8.7 nM and had negligible binding affinity for the closely related 5-HT(2B) and 5-HT(2C) receptors. 10k was orally bioavailable in rats, dogs, and monkeys and had an acceptable safety profile. As a result, 10k was selected further evaluation and advanced into clinical development as a potential treatment for arterial thrombosis.


Subject(s)
Arteries/drug effects , Benzamides/chemistry , Benzamides/pharmacology , Drug Discovery/methods , Drug Inverse Agonism , Morpholines/chemistry , Morpholines/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Serotonin 5-HT2 Receptor Agonists , Thrombosis/drug therapy , Animals , Benzamides/metabolism , Benzamides/pharmacokinetics , Dogs , Female , Humans , Inhibitory Concentration 50 , Male , Morpholines/metabolism , Morpholines/pharmacokinetics , Platelet Aggregation/drug effects , Pyrazoles/metabolism , Pyrazoles/pharmacokinetics , Rats , Receptor, Serotonin, 5-HT2A/metabolism , Structure-Activity Relationship , Substrate Specificity , Thrombosis/metabolism
8.
J Med Chem ; 48(22): 6779-82, 2005 Nov 03.
Article in English | MEDLINE | ID: mdl-16250635

ABSTRACT

A series of oxamyl dipeptides were optimized for pan caspase inhibition, anti-apoptotic cellular activity and in vivo efficacy. This structure-activity relationship study focused on the P4 oxamides and warhead moieties. Primarily on the basis of in vitro data, inhibitors were selected for study in a murine model of alpha-Fas-induced liver injury. IDN-6556 (1) was further profiled in additional in vivo models and pharmacokinetic studies. This first-in-class caspase inhibitor is now the subject of two Phase II clinical trials, evaluating its safety and efficacy for use in liver disease.


Subject(s)
Caspase Inhibitors , Liver Diseases/drug therapy , Pentanoic Acids/chemical synthesis , Adult , Alanine Transaminase/blood , Animals , Apoptosis/drug effects , Aspartate Aminotransferases/blood , Biological Availability , Caspase 3 , Cholestasis/drug therapy , Cholestasis/pathology , Clinical Trials, Phase I as Topic , Half-Life , Hepatitis C, Chronic/drug therapy , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Jurkat Cells , Liver/drug effects , Liver/pathology , Liver Diseases/enzymology , Liver Diseases/etiology , Mice , Pentanoic Acids/chemistry , Pentanoic Acids/pharmacology , Rats , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 15(15): 3632-6, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-15964758

ABSTRACT

Various heterocyclic hetero-methyl ketones of the 1-naphthyloxyacetyl-Val-Asp backbone have been prepared. A study of their structure-activity relationship (SAR) related to caspase-1, -3, -6, and -8 is reported. Their efficacy in a cellular model of cell death is also discussed. Potent broad-spectrum caspase inhibitors have been identified.


Subject(s)
Caspase Inhibitors , Cell Death/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Heterocyclic Compounds/pharmacology , Ketones/pharmacology , Animals , Aspartic Acid/chemistry , Cells, Cultured , Heterocyclic Compounds/chemical synthesis , Ketones/chemical synthesis , Mice , Models, Biological , Naphthols/chemistry , Structure-Activity Relationship , Valine/chemistry
11.
Bioorg Med Chem Lett ; 13(20): 3623-6, 2003 Oct 20.
Article in English | MEDLINE | ID: mdl-14505683

ABSTRACT

Various aryloxy methyl ketones of the 1-naphthyloxyacetyl-Val-Asp backbone have been prepared. A systematic study of their structure-activity relationship (SAR) related to caspases 1, 3, 6, and 8 is reported. Highly potent irreversible broad-spectrum caspase inhibitors have been identified. Their efficacy in cellular models of cell death and inflammation are also discussed.


Subject(s)
Caspase Inhibitors , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...