Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 75(3): 417-429, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23590461

ABSTRACT

Induced defenses are thought to be economical: growth and fitness-limiting resources are only invested into defenses when needed. To date, this putative growth-defense trade-off has not been quantified in a common currency at the level of individual compounds. Here, a quantification method for ¹5N-labeled proteins enabled a direct comparison of nitrogen (N) allocation to proteins, specifically, ribulose-1,5-bisposphate carboxylase/oxygenase (RuBisCO), as proxy for growth, with that to small N-containing defense metabolites (nicotine and phenolamides), as proxies for defense after herbivory. After repeated simulated herbivory, total N decreased in the shoots of wild-type (WT) Nicotiana attenuata plants, but not in two transgenic lines impaired in jasmonate defense signaling (irLOX3) and phenolamide biosynthesis (irMYB8). N was reallocated among different compounds within elicited rosette leaves: in the WT, a strong decrease in total soluble protein (TSP) and RuBisCO was accompanied by an increase in defense metabolites, irLOX3 showed a similar, albeit attenuated, pattern, whereas irMYB8 rosette leaves were the least responsive to elicitation, with overall higher levels of RuBisCO. Induced defenses were higher in the older compared with the younger rosette leaves, supporting the hypothesis that tissue developmental stage influences defense investments. We propose that MYB8, probably by regulating the production of phenolamides, indirectly mediates protein pool sizes after herbivory. Although the decrease in absolute N invested in TSP and RuBisCO elicited by simulated herbivory was much larger than the N-requirements of nicotine and phenolamide biosynthesis, ¹5N flux studies revealed that N for phenolamide synthesis originates from recently assimilated N, rather than from RuBisCO turnover.


Subject(s)
Nicotiana/physiology , Nitrogen/metabolism , Plant Proteins/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Animals , Cyclopentanes/metabolism , Herbivory , Manduca , Nicotine/metabolism , Oxylipins/metabolism , Pentoses , Plant Proteins/genetics , Plants, Genetically Modified , Nicotiana/growth & development
2.
Plant Signal Behav ; 8(12): e27570, 2013.
Article in English | MEDLINE | ID: mdl-24390158

ABSTRACT

Ribulose-1,5-bisphosphate carboxylase/ oxygenase (RuBisCO) is the most abundant protein on the planet and in addition to its central role in photosynthesis it is thought to function as a nitrogen (N)-storage protein and a potential source of N for defense biosynthesis in plants. In a recent study in the wild tobacco Nicotiana attenuata, we showed that the decrease in absolute N invested in soluble proteins and RuBisCO elicited by simulated herbivory was much larger than the N-requirements of nicotine and phenolamide biosynthesis; (15)N flux studies revealed that N for defensive phenolamide synthesis originates from recently assimilated N rather than from RuBisCO turnover. Here we show that a transgenic line of N. attenuata silenced in the expression of RuBisCO (asRUB) invests similar or even larger amounts of N into phenolamide biosynthesis compared with wild type plants, consistent with our previous conclusion that recently assimilated N is channeled into phenolamide synthesis after elicitation. We suggest that the decrease in leaf proteins after simulated herbivory is a tolerance mechanism, rather than a consequence of N-demand for defense biosynthesis.


Subject(s)
Gene Silencing , Herbivory/physiology , Manduca/physiology , Nicotiana/enzymology , Nicotiana/immunology , Nitrogen/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Animals , Models, Biological , Nicotine/metabolism , Nitrogen Isotopes , Protein Subunits/metabolism , Putrescine/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Spermidine/metabolism
3.
J Proteome Res ; 11(10): 4947-60, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-22905865

ABSTRACT

Herbivory leads to changes in the allocation of nitrogen among different pools and tissues; however, a detailed quantitative analysis of these changes has been lacking. Here, we demonstrate that a mass spectrometric data-independent acquisition approach known as LC-MS(E), combined with a novel algorithm to quantify heavy atom enrichment in peptides, is able to quantify elicited changes in protein amounts and (15)N flux in a high throughput manner. The reliable identification/quantitation of rabbit phosphorylase b protein spiked into leaf protein extract was achieved. The linear dynamic range, reproducibility of technical and biological replicates, and differences between measured and expected (15)N-incorporation into the small (SSU) and large (LSU) subunits of ribulose-1,5-bisphosphate-carboxylase/oxygenase (RuBisCO) and RuBisCO activase 2 (RCA2) of Nicotiana attenuata plants grown in hydroponic culture at different known concentrations of (15)N-labeled nitrate were used to further evaluate the procedure. The utility of the method for whole-plant studies in ecologically realistic contexts was demonstrated by using (15)N-pulse protocols on plants growing in soil under unknown (15)N-incorporation levels. Additionally, we quantified the amounts of lipoxygenase 2 (LOX2) protein, an enzyme important in antiherbivore defense responses, demonstrating that the approach allows for in-depth quantitative proteomics and (15)N flux analyses of the metabolic dynamics elicited during plant-herbivore interactions.


Subject(s)
Nicotiana/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Algorithms , Amino Acid Sequence , Animals , Bayes Theorem , Chromatography, Liquid/standards , Herbivory , Likelihood Functions , Lipoxygenase/chemistry , Lipoxygenase/isolation & purification , Lipoxygenase/metabolism , Molecular Sequence Data , Nitrogen Isotopes/metabolism , Peptide Fragments/chemistry , Peptide Mapping/standards , Phosphorylase b/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Rabbits , Reference Standards , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/isolation & purification , Spectrometry, Mass, Electrospray Ionization/standards , Tandem Mass Spectrometry/standards , Nicotiana/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...