Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904450

ABSTRACT

Solid lipid nanoparticles (SLN) based on candelilla wax were prepared using the hot homogenization technique. The resulting suspension had monomodal behavior with a particle size of 809-885 nm; polydispersity index < 0.31, and zeta potential of -3.5 mV 5 weeks after monitoring. The films were prepared with SLN concentrations of 20 and 60 g/L, each with a plasticizer concentration of 10 and 30 g/L; the polysaccharide stabilizers used were either xanthan gum (XG) or carboxymethyl cellulose (CMC) at 3 g/L. The effects of temperature, film composition, and relative humidity on the microstructural, thermal, mechanical, and optical properties, as well as the water vapor barrier, were evaluated. Higher amounts of SLN and plasticizer gave the films greater strength and flexibility due to the influence of temperature and relative humidity. The water vapor permeability (WVP) was lower when 60 g/L of SLN was added to the films. The arrangement of the SLN in the polymeric networks showed changes in the distribution as a function of the concentrations of the SLN and plasticizer. The total color difference (ΔE) was greater when the content of the SLN was increased, with values of 3.34-7.93. Thermal analysis showed an increase in the melting temperature when a higher SLN content was used, whereas a higher plasticizer content reduced it. Edible films with the most appropriate physical properties for the packaging, shelf-life extension, and improved quality conservation of fresh foods were those made with 20 g/L of SLN, 30 g/L of glycerol, and 3 g/L of XG.

2.
Foods ; 11(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35885393

ABSTRACT

Due to their high water, lipid, and protein content, meat and meat products are highly perishable. The principal spoilage mechanisms involved are protein and lipid oxidation and deterioration caused by microbial growth. Therefore, efforts are ongoing to ensure food safety and increase shelf life. The development of low-cost, innovative, eco-friendly approaches, such as nanotechnology, using non-toxic, inexpensive, FDA-approved ingredients is reducing the incorporation of chemical additives while enhancing effectiveness and functionality. This review focuses on advances in the incorporation of natural additives that increase the shelf life of meat and meat products through the application of nanosystems. The main solvent-free preparation methods are reviewed, including those that involve mixing organic-inorganic or organic-organic compounds with such natural substances as essential oils and plant extracts. The performance of these additives is analyzed in terms of their antioxidant effect when applied directly to meat as edible coatings or marinades, and during manufacturing processes. The review concludes that nanotechnology represents an excellent option for the efficient design of new meat products with enhanced characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...