Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 128(4): 705-21, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25666272

ABSTRACT

KEY MESSAGE: We report malt quality QTLs relevant to breeding with greater precision than previous mapping studies. The distribution of favorable alleles suggests strategies for marker-assisted breeding and germplasm exchange. This study leverages the breeding data of 1,862 barley breeding lines evaluated in 97 field trials for genome-wide association study of malting quality traits in barley. The mapping panel consisted of six-row and two-row advanced breeding lines from eight breeding populations established at six public breeding programs across the United States. A total of 4,976 grain samples were subjected to micro-malting analysis and mapping of nine quality traits was conducted with 3,072 SNP markers distributed throughout the genome. Association mapping was performed for individual breeding populations and for combined six-row and two-row populations. Only 16% of the QTL we report here had been detected in prior bi-parental mapping studies. Comparison of the analyses of the combined two-row and six-row panels identified only two QTL regions that were common to both. In total, 108 and 107 significant marker-trait associations were identified in all six-row and all two-row breeding programs, respectively. A total of 102 and 65 marker-trait associations were specific to individual six-row and two-row breeding programs, respectively indicating that most marker-trait associations were breeding population specific. Combining datasets from different breeding program resulted in both the loss of some QTL that were apparent in the analyses of individual programs and the discovery of new QTL not identified in individual programs. This suggests that simply increasing sample size by pooling samples with different breeding history does not necessarily increase the power to detect associations. The genetic architecture of malting quality and the distribution of favorable alleles suggest strategies for marker-assisted selection and germplasm exchange.


Subject(s)
Chromosome Mapping , Genetic Association Studies , Hordeum/genetics , Quantitative Trait Loci , Breeding , Chromosomes, Plant , Gene Frequency , Genetic Markers , Linkage Disequilibrium , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide , United States
2.
Pest Manag Sci ; 68(6): 845-52, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22307918

ABSTRACT

BACKGROUND: The widespread acceptance of reduced-tillage farming in cereal cropping systems in the Pacific Northwest of the United States has resulted in increased use of herbicides for weed control. However, soil residual concentrations of widely used imidazalone herbicides limit the cultivation of barley, which is more sensitive than wheat. In addition, increased severity of the root rot disease caused by Rhizoctonia solani is associated with reduction in tillage. Many crops exhibit altered disease responses after application of registered herbicides. In this study, the injury symptoms in barley caused by sublethal rates of two acetolactate synthase (ALS)-inhibiting herbicides, imazamox and propoxycarbazone-sodium, were assessed in factorial combinations with a range of inoculum concentrations of the root rot pathogen Rhizoctonia solani AG-8. RESULTS: Both herbicides and pathogen had negative impacts on plant growth parameters such as root and shoot dry weight, shoot height and first leaf length, and interactions between pathogen and herbicide were detected. CONCLUSIONS: The results suggested that sublethal rates of herbicides and R. solani could alter severity of injury symptoms, possibly owing to the herbicide predisposing the plant to the pathogen.


Subject(s)
Acetolactate Synthase/antagonists & inhibitors , Enzyme Inhibitors/adverse effects , Herbicides/adverse effects , Hordeum/drug effects , Hordeum/microbiology , Plant Roots/microbiology , Rhizoctonia/pathogenicity , Benzoates/adverse effects , Hordeum/growth & development , Imidazoles/adverse effects , Plant Diseases/microbiology , Plant Roots/drug effects , Plant Roots/growth & development , Triazoles/adverse effects
3.
Proc Natl Acad Sci U S A ; 108(21): 8909-13, 2011 May 24.
Article in English | MEDLINE | ID: mdl-21551103

ABSTRACT

Induced mutagenesis can be an effective way to increase variability in self-pollinated crops for a wide variety of agronomically important traits. Crop resistance to a given herbicide can be of practical value to control weeds with efficient chemical use. In some crops (for example, wheat, maize, and canola), resistance to imidazolinone herbicides (IMIs) has been introduced through mutation breeding and is extensively used commercially. However, this production system imposes plant-back restrictions on rotational crops because of herbicide residuals in the soil. In the case of barley, a preferred rotational crop after wheat, a period of 9-18 mo is required. Thus, introduction of barley varieties showing resistance to IMIs will provide greater flexibility as a rotational crop. The objective of the research reported was to identify resistance in barley for IMIs through induced mutagenesis. To achieve this objective, a sodium azide-treated M(2)/M(3) population of barley cultivar Bob was screened for resistance against acetohydroxy acid synthase (AHAS)-inhibiting herbicides. The phenotypic screening allowed identification of a mutant line showing resistance against IMIs. Molecular analysis identified a single-point mutation leading to a serine 653 to asparagine amino acid substitution in the herbicide-binding site of the barley AHAS gene. The transcription pattern of the AHAS gene in the mutant (Ser653Asn) and WT has been analyzed, and greater than fourfold difference in transcript abundance was observed. Phenotypic characteristics of the mutant line are promising and provide the base for the release of IMI-resistant barley cultivar(s).


Subject(s)
Acetolactate Synthase/genetics , Drug Resistance/genetics , Herbicides/pharmacology , Hordeum/genetics , Imidazolines/pharmacology , Amino Acid Substitution , Crops, Agricultural , Hordeum/enzymology , Molecular Sequence Data , Mutagenesis , Point Mutation
4.
BMC Genet ; 9: 73, 2008 Nov 18.
Article in English | MEDLINE | ID: mdl-19017390

ABSTRACT

BACKGROUND: A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. DESCRIPTION: Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork http://www.genenetwork.org. GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits). Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them. CONCLUSION: By integrating barley genotypic, phenotypic and mRNA abundance data sets directly within GeneNetwork's analytical environment we provide simple web access to the data for the research community. In this environment, a combination of correlation analysis and linkage mapping provides the potential to identify and substantiate gene targets for saturation mapping and positional cloning. By integrating datasets from an unsequenced crop plant (barley) in a database that has been designed for an animal model species (mouse) with a well established genome sequence, we prove the importance of the concept and practice of modular development and interoperability of software engineering for biological data sets.


Subject(s)
Database Management Systems , Databases, Genetic , Hordeum/genetics , Chromosome Mapping , Genome, Plant , Genotype , Phenotype
5.
J Exp Bot ; 56(409): 47-54, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15501909

ABSTRACT

Genetic control of seed dormancy in barley (Hordeum vulgare L.) has mostly been described in terms of quantitative variation. Although some molecular markers for dormancy QTL have been identified, the corresponding genes involved in the regulation of the process have not been cloned. Induced barley mutants may constitute useful material to study the physiology and genetics of seed dormancy. The objective of this study was to identify the genetic control of this trait in a mutant (TL43) produced in the barley cv. Triumph. This mutant was selected for reduced dormancy and reduced sensitivity to abscisic acid (ABA). Two sets of F6 barley lines were selected for high and low levels of dormancy from a cross between the original dormant parent and the sodium azide-induced non-dormant TL43 mutant. Unexpectedly, given the near-isogenic nature of these two genotypes, polymorphism was detected for an SSR located in the centromeric region of chromosome 6(6H) out of a total of 92 molecular markers evenly distributed along the genome. Fortunately, upon three cycles of intensive divergent selection, every dormant and non-dormant F5 line consistently showed the genotype for this region identical to Triumph and TL43, respectively. Based on the mutagenic effect presumably attributed to sodium azide, mostly single point mutations, it cannot be clearly established if such extensive genomic variation on chromosome 6(6H) is due to the mutagenic treatment or may be an introgression from an unknown source. The means that could originate such heterogeneity are discussed; however, regardless of its origin, this genomic region shows a strong association with the expression of seed dormancy and provides an additional genetic locus for further studies of the mechanistic basis of this complex trait. In addition, since TL43 shows reduced sensitivity to ABA, the response to this hormone was determined on the F6 seed from the two sets of selected F5 lines. The results confirmed that the initial level of dormancy in the seed lot is the most important factor in determining ABA sensitivity.


Subject(s)
Abscisic Acid/metabolism , Chromosomes, Plant/genetics , Germination/genetics , Hordeum/genetics , Plant Growth Regulators/physiology , Centromere/physiology , Genetic Linkage , Genetic Markers , Genotype , Hordeum/physiology , Mutation , Polymorphism, Genetic , Seeds/genetics , Seeds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...