Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 26(41): 8916-8925, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32212281

ABSTRACT

The pentamethylcyclopentadienyl N-heterocyclic carbene nickel complex [Ni(η5 -C5 Me5 )Cl(IMes)] (IMes=1,3-dimesitylimidazol-2-ylidene) efficiently catalyses the anti-Markovnikov hydroboration of alkenes with catecholborane in the presence of a catalytic amount of potassium tert-butoxide, and joins the very exclusive club of nickel catalysts for this important transformation. Interestingly, the regioselectivity can be reversed in some cases by using pinacolborane instead of catecholborane. Mechanistic investigations involving control experiments, 1 H and 11 B NMR spectroscopy, cyclic voltammetry, piezometric measurements and DFT calculations suggest an initial reduction of the NiII precursor to a NiI active species with the concomitant release of H2 . The crucial role of the alkoxo-catecholato-borohydride species resulting from the reaction of potassium tert-butoxide with catecholborane in the formation of an intermediate nickel-hydride species that would then be reduced to the NiI active species, is highlighted.

2.
Dalton Trans ; 47(47): 17134-17145, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30467568

ABSTRACT

Neutral nickel-N-heterocyclic carbene complexes, (κ1-C)-[NiCpBr{R-NHC-(CH2)2SR'}] [Cp = η5-C5H5; R-NHC-(CH2)2SR' = 1-mesityl-3-[2-(tert-butylthio)ethyl]- (1a), 1-mesityl-3-[2-(phenylthio)ethyl]- (1b), 1-benzyl-3-[2-(tert-butylthio)ethyl]- (1c), 1-benzyl-3-[2-(phenylthio)ethyl]-imidazol-2-ylidene (1d)], which bear a N-bound thioether side arm, were prepared by the reaction of nickelocene with the corresponding imidazolium bromides [R-NHC-(CH2)2SR'·HBr] (a-d), via conventional or microwave heating. The 1H NMR spectra of the benzyl-substituted species 1c and 1d showed signals for diastereotopic NCH2CH2S protons at room temperature. However, structural studies established the absence of coordination of the sulphur atom in the solid state, and solvent DFT calculations showed that bromide displacement by sulphur is an unfavourable process (ΔG = +13.5 kcal mol-1 for 1d), thereby suggesting that the observed disatereotopicity is more likely due to significant steric congestion rather than to a possible C,S-chelation in solution. Treatment of these complexes with KPF6 in tetrahydrofuran (THF) led to bromide abstraction to afford the cationic complexes [NiCp{R-NHC-(CH2)2SR'}](PF6) (2a-c). Alternatively, 2a-c could also be prepared by the direct reaction of nickelocene with the corresponding imidazolium hexafluorophosphate salts [R-NHC-(CH2)2SR'·HPF6]. Inversely to the neutral species, whereas X-ray crystallography established C,S-chelation in the solid state, the 1H NMR spectra (CDCl3, CD2Cl2, or thf-d8) at room temperature showed no diastereotopic NCH2CH2S protons, thus suggesting the possible displacement of the sulphur atom by the respective solvents and/or very fast sulphur inversion. DFT calculations established a low energy inversion process in all cases (+9 ≤ΔG‡≤ +13 kcal mol-1) as well as a favourable solvent coordination process (ΔG‡≈ +11 kcal mol-1; ΔG≈-7 kcal mol-1) with a solvent such as THF, thus suggesting that sulphur inversion and/or solvent coordination can both account for the absence of diastereotopy at room temperature, depending on the solvent. While all complexes catalysed the hydrosilylation of benzaldehyde in the absence of any additive, the cationic C,S-chelated complexes 2 proved more active than the sterically constrained neutral species 1. In particular, 2c proved to be the most active pre-catalyst and its catalytic charge could be lowered down to 2 mol% with PhSiH3 as the hydrogen source.

SELECTION OF CITATIONS
SEARCH DETAIL
...