Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 2(11): 995-1003, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23093251

ABSTRACT

UNLABELLED: Androgen deprivation therapy (ADT) is initially effective in treating metastatic prostate cancer, and secondary hormonal therapies are being tested to suppress androgen receptor (AR) reactivation in castration-resistant prostate cancer (CRPC). Despite variable responses to AR pathway inhibitors in CRPC, there are no reliable biomarkers to guide their application. Here, we used microfluidic capture of circulating tumor cells (CTC) to measure AR signaling readouts before and after therapeutic interventions. Single-cell immunofluorescence analysis revealed predominantly "AR-on" CTC signatures in untreated patients, compared with heterogeneous ("AR-on, AR-off, and AR-mixed") CTC populations in patients with CRPC. Initiation of first-line ADT induced a profound switch from "AR-on" to "AR-off" CTCs, whereas secondary hormonal therapy in CRPC resulted in variable responses. Presence of "AR-mixed" CTCs and increasing "AR-on" cells despite treatment with abiraterone acetate were associated with an adverse treatment outcome. Measuring treatment-induced signaling responses within CTCs may help guide therapy in prostate cancer. SIGNIFICANCE: Acquired resistance to first-line hormonal therapy in prostate cancer is heterogeneous in the extent of AR pathway reactivation. Measurement of pre- and posttreatment AR signaling within CTCs may help target such treatments to patients most likely to respond to second-line therapies.


Subject(s)
Biomarkers, Tumor/metabolism , Neoplasms, Hormone-Dependent/metabolism , Neoplastic Cells, Circulating/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Cell Growth Processes/physiology , Cell Line, Tumor , Humans , Male , Neoplasms, Hormone-Dependent/blood , Neoplasms, Hormone-Dependent/pathology , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Signal Transduction
2.
Nature ; 487(7408): 510-3, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22763454

ABSTRACT

Circulating tumour cells (CTCs) shed into blood from primary cancers include putative precursors that initiate distal metastases. Although these cells are extraordinarily rare, they may identify cellular pathways contributing to the blood-borne dissemination of cancer. Here, we adapted a microfluidic device for efficient capture of CTCs from an endogenous mouse pancreatic cancer model and subjected CTCs to single-molecule RNA sequencing, identifying Wnt2 as a candidate gene enriched in CTCs. Expression of WNT2 in pancreatic cancer cells suppresses anoikis, enhances anchorage-independent sphere formation, and increases metastatic propensity in vivo. This effect is correlated with fibronectin upregulation and suppressed by inhibition of MAP3K7 (also known as TAK1) kinase. In humans, formation of non-adherent tumour spheres by pancreatic cancer cells is associated with upregulation of multiple WNT genes, and pancreatic CTCs revealed enrichment for WNT signalling in 5 out of 11 cases. Thus, molecular analysis of CTCs may identify candidate therapeutic targets to prevent the distal spread of cancer.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Neoplasm Metastasis/genetics , Neoplastic Cells, Circulating/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics , Animals , Cell Survival , Contact Inhibition , Disease Models, Animal , Genes, Neoplasm/genetics , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , Mice , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , Sequence Analysis, RNA , Wnt Proteins/genetics , Wnt2 Protein/genetics , Wnt2 Protein/metabolism
3.
Anal Chem ; 84(8): 3682-8, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22414137

ABSTRACT

Microfluidic systems for affinity-based cell isolation have emerged as a promising approach for the isolation of specific cells from complex matrices (i.e., circulating tumor cells in whole blood). However, these technologies remain limited by the lack of reliable methods for the innocuous recovery of surface captured cells. Here, we present a biofunctional sacrificial hydrogel coating for microfluidic chips that enables the highly efficient release of isolated cells (99% ± 1%) following gel dissolution. This covalently cross-linked alginate biopolymer system is stable in a wide variety of physiologic solutions (including EDTA treated whole blood) and may be rapidly degraded via backbone cleavage with alginate lyase. The capture and release of EpCAM expressing cancer cells using this approach was found to have no significant effect on cell viability or proliferative potential, and recovered cells were demonstrated to be compatible with downstream immunostaining and FISH analysis.


Subject(s)
Alginates/chemistry , Biopolymers/chemistry , Cell Tracking , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Carbohydrate Sequence , Cell Line, Tumor , Cell Survival , Female , Humans , Male , Microfluidic Analytical Techniques , Molecular Sequence Data , Molecular Structure , Surface Properties
4.
Sci Transl Med ; 2(25): 25ra23, 2010 Mar 31.
Article in English | MEDLINE | ID: mdl-20424012

ABSTRACT

Rare circulating tumor cells (CTCs) are present in the blood of patients with metastatic epithelial cancers but have been difficult to measure routinely. We report a quantitative automated imaging system for analysis of prostate CTCs, taking advantage of prostate-specific antigen (PSA), a unique prostate tumor-associated marker. The specificity of PSA staining enabled optimization of criteria for baseline image intensity, morphometric measurements, and integration of multiple signals in a three-dimensional microfluidic device. In a pilot analysis, we detected CTCs in prostate cancer patients with localized disease, before surgical tumor removal in 8 of 19 (42%) patients (range, 38 to 222 CTCs per milliliter). For 6 of the 8 patients with preoperative CTCs, a precipitous postoperative decline (<24 hours) suggests a short half-life for CTCs in the blood circulation. Other patients had persistent CTCs for up to 3 months after prostate removal, suggesting early but transient disseminated tumor deposits. In patients with metastatic prostate cancer, CTCs were detected in 23 of 36 (64%) cases (range, 14 to 5000 CTCs per milliliter). In previously untreated patients followed longitudinally, the numbers of CTCs declined after the initiation of effective therapy. The prostate cancer-specific TMPRSS2-ERG fusion was detectable in RNA extracted from CTCs from 9 of 20 (45%) patients with metastatic disease, and dual staining of captured CTCs for PSA and the cell division marker Ki67 indicated a broad range for the proportion of proliferating cells among CTCs. This method for analysis of CTCs will facilitate the application of noninvasive tumor sampling to direct targeted therapies in advanced prostate cancer and warrants the initiation of long-term clinical studies to test the importance of CTCs in invasive localized disease.


Subject(s)
Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms/pathology , Diagnostic Imaging , Female , Humans , Male , Prostate-Specific Antigen/blood , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism
5.
Cancer Res ; 70(6): 2158-64, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20215515

ABSTRACT

In a genome-wide screen of 684 cancer cell lines, we identified homozygous intragenic microdeletions involving genes encoding components of the apical-basal cell polarity complexes. Among these, PARD3 is disrupted in cell lines and primary tumors from squamous carcinomas and glioblastomas. Reconstituting PARD3 expression in both cell types restores tight junctions and retards contact-dependent proliferation. Searching specifically for small intragenic microdeletions using high-resolution genomic arrays may be complementary to other genomic deletion screens and resequencing efforts in identifying new tumor suppressor genes.


Subject(s)
Gene Deletion , Neoplasms/genetics , Adaptor Proteins, Signal Transducing , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Cycle Proteins/biosynthesis , Cell Cycle Proteins/genetics , Cell Line, Tumor , Genome, Human , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , In Situ Hybridization, Fluorescence , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Neoplasms/metabolism , Neoplasms/pathology , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tight Junctions/genetics , Tight Junctions/metabolism , Tight Junctions/pathology
6.
Cancer Res ; 68(12): 4853-61, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18559533

ABSTRACT

Activating BRAF kinase mutations arise in approximately 7% of all human tumors, and preclinical studies have validated the RAF-mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase-ERK signaling cascade as a potentially important therapeutic target in this setting. Selective RAF kinase inhibitors are currently undergoing clinical development, and based on the experience with other kinase-targeted therapeutics, it is expected that clinical responses to these agents, if observed, will lead to the eventual emergence of drug resistance in most cases. Thus, it is important to establish molecular mechanisms underlying such resistance to develop effective therapeutic strategies to overcome or prevent drug resistance. To anticipate potential mechanisms of acquired resistance to RAF inhibitors during the course of treatment, we established drug-resistant clones from a human melanoma-derived cell line harboring the recurrent V600E activating BRAF mutation, which exhibits exquisite sensitivity to AZ628, a selective RAF kinase inhibitor. We determined that elevated CRAF protein levels account for the acquisition of resistance to AZ628 in these cells, associated with a switch from BRAF to CRAF dependency in tumor cells. We also found that elevated CRAF protein levels may similarly contribute to primary insensitivity to RAF inhibition in a subset of BRAF mutant tumor cells. Interestingly, AZ628-resistant cells demonstrating either primary drug insensitivity or acquired drug resistance exhibit exquisite sensitivity to the HSP90 inhibitor geldanamycin. Geldanamycin effectively promotes the degradation of CRAF, thereby revealing a potential therapeutic strategy to overcome resistance to RAF inhibition in a subset of BRAF mutant tumors.


Subject(s)
Drug Resistance, Neoplasm , Melanoma/drug therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-raf/metabolism , Cell Proliferation/drug effects , Humans , In Situ Hybridization, Fluorescence , MAP Kinase Kinase 1/metabolism , Melanoma/metabolism , Melanoma/pathology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mutation/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Phosphorylation/drug effects , Polymerase Chain Reaction , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Proto-Oncogene Proteins c-raf/genetics , RNA, Small Interfering/pharmacology , Tumor Cells, Cultured , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...