Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 758
Filter
1.
Viruses ; 16(5)2024 05 14.
Article in English | MEDLINE | ID: mdl-38793657

ABSTRACT

NUT (nuclear-protein-in-testis) carcinoma (NC) is a highly aggressive tumor disease. Given that current treatment regimens offer a median survival of six months only, it is likely that this type of tumor requires an extended multimodal treatment approach to improve prognosis. In an earlier case report, we could show that an oncolytic herpes simplex virus (T-VEC) is functional in NC patients. To identify further combination partners for T-VEC, we have investigated the anti-tumoral effects of T-VEC and five different small molecule inhibitors (SMIs) alone and in combination in human NC cell lines. Dual combinations were found to result in higher rates of tumor cell reductions when compared to the respective monotherapy as demonstrated by viability assays and real-time tumor cell growth monitoring. Interestingly, we found that the combination of T-VEC with SMIs resulted in both stronger and earlier reductions in the expression of c-Myc, a main driver of NC cell proliferation, when compared to T-VEC monotherapy. These results indicate the great potential of combinatorial therapies using oncolytic viruses and SMIs to control the highly aggressive behavior of NC cancers and probably will pave the way for innovative multimodal clinical studies in the near future.


Subject(s)
Biological Products , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/physiology , Oncolytic Viruses/genetics , Oncolytic Virotherapy/methods , Cell Line, Tumor , Combined Modality Therapy , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Proliferation/drug effects , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Carcinoma/therapy , Cell Survival/drug effects , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasm Proteins , Herpesvirus 1, Human
2.
Magn Reson Med ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651172

ABSTRACT

PURPOSE: To observe the growth and resolution of decompression gas bubbles in the spinal cord of live rats in real time using MRI. METHODS: We constructed an MRI-compatible pressure chamber system to visualize gas bubble dynamics in deep tissues in real time. The system pressurizes and depressurizes rodents inside an MRI scanner and monitors their respiratory rate, heart rate, and body temperature while providing gaseous anesthesia under pressure during the experiments. RESULTS: We observed the formation of decompression gas bubbles in the spinal cord of rats after compression to 7.1 bar absolute and rapid decompression inside the MRI scanner while maintaining continuous gaseous anesthesia and vital monitoring. CONCLUSION: We have shown the direct observation of decompression gas bubble formation in real time by MRI in live, anesthetized rats.

3.
Allergy ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573073

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) have been implicated in the pathogenesis of asthma, however, how EVs contribute to immune dysfunction and type 2 airway inflammation remains incompletely understood. We aimed to elucidate roles of airway EVs and their miRNA cargo in the pathogenesis of NSAID-exacerbated respiratory disease (N-ERD), a severe type 2 inflammatory condition. METHODS: EVs were isolated from induced sputum or supernatants of cultured nasal polyp or turbinate tissues of N-ERD patients or healthy controls by size-exclusion chromatography and characterized by particle tracking, electron microscopy and miRNA sequencing. Functional effects of EV miRNAs on gene expression and mediator release by human macrophages or normal human bronchial epithelial cells (NHBEs) were studied by RNA sequencing, LC-MS/MS and multiplex cytokine assays. RESULTS: EVs were highly abundant in secretions from the upper and lower airways of N-ERD patients. N-ERD airway EVs displayed profoundly altered immunostimulatory capacities and miRNA profiles compared to airway EVs of healthy individuals. Airway EVs of N-ERD patients, but not of healthy individuals induced inflammatory cytokine (GM-CSF and IL-8) production by NHBEs. In macrophages, N-ERD airway EVs exhibited an impaired potential to induce cytokine and prostanoid production, while enhancing M2 macrophage activation. Let-7 family miRNAs were highly enriched in sputum EVs from N-ERD patients and mimicked suppressive effects of N-ERD EVs on macrophage activation. CONCLUSION: Aberrant airway EV miRNA profiles may contribute to immune dysfunction and chronic type 2 inflammation in N-ERD. Let-7 family miRNAs represent targets for correcting aberrant macrophage activation and mediator responses in N-ERD.

4.
Artif Intell Med ; 152: 102873, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643592

ABSTRACT

The COVID-19 pandemic has given rise to a broad range of research from fields alongside and beyond the core concerns of infectiology, epidemiology, and immunology. One significant subset of this work centers on machine learning-based approaches to supporting medical decision-making around COVID-19 diagnosis. To date, various challenges, including IT issues, have meant that, notwithstanding this strand of research on digital diagnosis of COVID-19, the actual use of these methods in medical facilities remains incipient at best, despite their potential to relieve pressure on scarce medical resources, prevent instances of infection, and help manage the difficulties and unpredictabilities surrounding the emergence of new mutations. The reasons behind this research-application gap are manifold and may imply an interdisciplinary dimension. We argue that the discipline of AI ethics can provide a framework for interdisciplinary discussion and create a roadmap for the application of digital COVID-19 diagnosis, taking into account all disciplinary stakeholders involved. This article proposes such an ethical framework for the practical use of digital COVID-19 diagnosis, considering legal, medical, operational managerial, and technological aspects of the issue in accordance with our diverse research backgrounds and noting the potential of the approach we set out here to guide future research.


Subject(s)
Artificial Intelligence , COVID-19 , COVID-19/diagnosis , Humans , Artificial Intelligence/ethics , SARS-CoV-2 , Machine Learning/ethics , Diagnosis, Computer-Assisted/ethics , Pandemics
5.
Sensors (Basel) ; 24(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38544208

ABSTRACT

Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled Néel-Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dC>25 nm with narrow size distributions (σ<0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays.

6.
Lung Cancer ; 189: 107496, 2024 03.
Article in English | MEDLINE | ID: mdl-38301600

ABSTRACT

NUT carcinomas (NC) are very rare and highly aggressive tumors, molecularly defined by an aberrant gene fusion involving the NUTM1 gene. NCs preferentially arise intrathoracically or in the head and neck region, having a highly adverse prognosis with almost no long-term survivors. Here, we report on a cohort of 35 adult NC patients who were evaluated at University Hospital Tuebingen in an eight year time span, i.e. between 2016 and 2023. Primary objectives were overall survival (OS) and influence of primary tumor locations, fusion gene types and staging on OS. Secondary objectives were patient baseline characteristics, risk factors, tumor markers, treatment decisions and responses to therapy comparing thoracic vs non-thoracic origins. Further, data from tumor genome sequencing were analyzed. In this monocentric German cohort, 54 % of patients had thoracic tumors and 65 % harbored a BRD4-NUTM1 fusion gene. Median OS was 7.5 months, being significantly dependent on primary tumor location and nodal status. Initial misdiagnosis was a problem in 31 % of the cases. Surgery was the first treatment in most patients (46 %) and 80 % were treated with polychemotherapies, showing longer progression free survival (PFS) with ifosfamide-based than with platinum-based regimens. Patients treated with an immune checkpoint inhibitor (ICI) in addition to first-line chemotherapy tended to have longer OS. Initial LDH levels could be identified as a prognostic measure for survival prognosis. Sequencing data highlight aberrant NUTM1 fusion genes as unique tumor driver genes. This is the largest adult European cohort of this orphan tumor disease, showing epidemiologic and molecular features as well as relevant clinical data. Awareness to prevent misdiagnosis, fast contact to a specialized nation-wide center and referral to clinical studies are essential as long-term survival is rarely achieved with any of the current therapeutic regimes.


Subject(s)
Carcinoma , Lung Neoplasms , Adult , Humans , Biomarkers, Tumor , Nuclear Proteins/genetics , Transcription Factors , Germany , Bromodomain Containing Proteins , Cell Cycle Proteins
7.
Cancers (Basel) ; 16(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38339240

ABSTRACT

Neuroendocrine neoplasms represent a heterogenous group of rare tumors whose current therapeutic options show only limited efficacy. Oncolytic viruses exert their mode of action through (onco-)lysis of infected tumor cells and the induction of a systemic antitumoral immune response in a virus-induced inflammatory micromilieu. Here, we investigated the potential of our well-established second-generation suicide-gene armed oncolytic measles vaccine virus (MeV-SCD) in five human NEN cell lines. First, (i) expression of the MeV receptor CD46 and (ii) its correlation with primary infection rates were analyzed. Next, (iii) promising combination partners for MeV-SCD were tested by employing either the prodrug 5-fluorocytosine, which is converted into the chemotherapeutic compound 5-fluorouracil, or the mTOR-inhibitor everolimus. As a result, MeV-SCD was found to kill all NEN tumor cell lines efficiently in a dose-dependent manner. This oncolytic effect was further enhanced by exploiting the prodrug-converting system, which was found to be highly instrumental in overcoming the partial resistance found in a single NEN cell line. Furthermore, viral replication was unaffected by everolimus, which is a basic requirement for combined use in NEN patients. These data suggest that MeV-SCD has profound potential for patients with NEN, thus paving the way for early clinical trials.

8.
Cancers (Basel) ; 16(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38254857

ABSTRACT

Effective treatment options for peritoneal surface malignancies (PSMs) are scarce. Oncolytic virotherapy with recombinant vaccinia viruses might constitute a novel treatment option for PSM. We aimed to identify the most effective oncolytic vaccinia virus strain in two murine mesothelioma cell lines and the oncolytic potential in a murine model of peritoneal mesothelioma. Cell lines AB12 and AC29 were infected in vitro with vaccinia virus strains Lister (GLV-1h254), Western Reserve (GLV-0b347), and Copenhagen (GLV-4h463). The virus strain GLV-0b347 was shown most effective in vitro and was further investigated by intraperitoneal (i.p.) application to AB12 and AC29 mesothelioma-bearing mice. Feasibility, safety, and effectiveness of virotherapy were assessed by evaluating the peritoneal cancer index (PCI), virus detection in tumor tissues and ascites, virus growth curves, and comparison of overall survival. After i.p. injection of GLV-0b347, virus was detected in both tumor cells and ascites. In comparison to mock-treated mice, overall survival was significantly prolonged, ascites was less frequent and PCI values declined. However, effective treatment was only observed in animals with limited tumor burden at the time point of virus application. Nonetheless, intraperitoneal virotherapy with GLV-0b347 might constitute a novel therapeutic option for the treatment of peritoneal mesothelioma. Additional treatment modifications and combinational regimes will be investigated to further enhance treatment efficacy.

9.
Clin Nucl Med ; 49(3): 207-214, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38271237

ABSTRACT

AIM/INTRODUCTION: Peptide receptor radionuclide therapy (PRRT) represents a cornerstone of treatment regimens for patients with low proliferative neuroendocrine tumors (NETs). However, in patients experiencing somatostatin receptor-positive NET with higher proliferation rates, a value and potential therapeutic benefit of PRRT as part of multimodal treatment approaches and potentially with addition of radiosensitizing agents has not yet been established. PATIENTS AND METHODS: In this study, 20 patients with histologically confirmed gastroenteropancreatic (GEP) NET with proliferation rates (Ki67) between 15% and 55% were treated either with PRRT only (n = 10) or with a combination therapy (n = 10) comprising PRRT and capecitabine/temozolomide (CAP/TEM) for at least 2 consecutive cycles. RESULTS: Disease control rate in patients treated with PRRT alone was 60% (40% stable disease and 20% partial response). Strikingly, in patients treated with PRRT in combination with radiosensitization (CAP/TEM), the disease control rate was 90% (20% stable disease and 70% partial response). The median progression-free survival in the PRRT only group was 12 months, whereas the median progression-free survival in the PRRT + CAP/TEM group was 26 months and has not been yet reached for all patients in the group during the observation period. The median disease-specific survival for patients with PRRT alone was 51 months, whereas this end point was not yet reached in the PRRT + CAP/TEM group. Moreover, the PRRT + CAP/TEM group showed a significantly higher reduction of SSTR-PET-based metabolic tumor volume and chromogranin A levels compared with the PRRT only group. Importantly, adverse events of all grades did not differ between both groups. CONCLUSIONS: PRRT + CAP/TEM represents a highly promising and well-tolerated therapeutic regimen for patients experiencing somatostatin receptor-positive NET with higher (Ki67 ≥ 15%) proliferation rate. Prospective randomized clinical trials are warranted.


Subject(s)
Intestinal Neoplasms , Neuroendocrine Tumors , Organometallic Compounds , Pancreatic Neoplasms , Stomach Neoplasms , Humans , Octreotide/therapeutic use , Pilot Projects , Receptors, Somatostatin/metabolism , Ki-67 Antigen , Prospective Studies , Pancreatic Neoplasms/pathology , Neuroendocrine Tumors/radiotherapy , Neuroendocrine Tumors/metabolism , Radioisotopes/therapeutic use , Organometallic Compounds/therapeutic use
10.
Nat Commun ; 15(1): 326, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38182626

ABSTRACT

Fine-scale knowledge of the changes in composition and function of the human gut microbiome compared that of our closest relatives is critical for understanding the evolutionary processes underlying its developmental trajectory. To infer taxonomic and functional changes in the gut microbiome across hominids at different timescales, we perform high-resolution metagenomic-based analyzes of the fecal microbiome from over two hundred samples including diverse human populations, as well as wild-living chimpanzees, bonobos, and gorillas. We find human-associated taxa depleted within non-human apes and patterns of host-specific gut microbiota, suggesting the widespread acquisition of novel microbial clades along the evolutionary divergence of hosts. In contrast, we reveal multiple lines of evidence for a pervasive loss of diversity in human populations in correlation with a high Human Development Index, including evolutionarily conserved clades. Similarly, patterns of co-phylogeny between microbes and hosts are found to be disrupted in humans. Together with identifying individual microbial taxa and functional adaptations that correlate to host phylogeny, these findings offer insights into specific candidates playing a role in the diverging trajectories of the gut microbiome of hominids. We find that repeated horizontal gene transfer and gene loss, as well as the adaptation to transient microaerobic conditions appear to have played a role in the evolution of the human gut microbiome.


Subject(s)
Gastrointestinal Microbiome , Hominidae , Microbiota , Animals , Gastrointestinal Microbiome/genetics , Pan troglodytes , Pan paniscus
11.
Curr Protoc ; 4(1): e954, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38217512

ABSTRACT

Using phages as antibacterials is becoming a customary practice in Western countries. Nonetheless, successful treatments must consider the growth rate of the bacterial host and the degradation of the virions. Therefore, successful treatments require administering the right amount of phage (viral load, Vφ) at the right moment (administration time, Tφ). The present protocols implement a machine learning approach to determine the best combination of Vφ and Tφ to obtain the elimination of the target bacterium from a system. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: One bacterium, one phage Alternate Protocol 1: One bacterium, one phage (wrapping function) Alternate Protocol 2: One bacterium, one phage (wrapping function, alternative growing model) Basic Protocol 2: Two bacteria, one phage Alternate Protocol 3: Two bacteria, one phage (launch from terminal).


Subject(s)
Bacteriophages , Bacteria , Anti-Bacterial Agents/pharmacology
12.
Phytomedicine ; 123: 155176, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37976697

ABSTRACT

BACKGROUND: Selected natural compounds exhibit very good antiviral properties. Especially, the medicinal plant Humulus lupulus (hop) contains several secondary plant metabolites some of which have previously shown antiviral activities. Among them, the prenylated chalcone xanthohumol (XN) demonstrated to be a potent inhibitor of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro). HYPOTHESIS/PURPOSE: Following the finding that xanthohumol (XN) is a potent inhibitor of SARS-CoV-2 Mpro, the effect of XN and its major derivatives isoxanthohumol (IXN), 6-prenylnaringenin (6-PN), and 8-prenylnaringenin (8-PN) from hops on SARS-CoV-2 papain-like protease (PLpro) were investigated. STUDY DESIGN: The modulatory effect of the hop compounds on PLpro were studied first in silico and then in vitro. In addition, the actual effect of hop compounds on the replication of SARS-CoV-2 in host cells was investigated. METHODS: In silico docking analysis was used to predict the binding affinity of hop compounds to the active site of PLpro. A recombinant PLpro was cloned, purified, characterized, and analyzed by small-angle X-ray scattering (SAXS), deISGylation assays, and kinetic analyses. Antiviral activity of hop compounds was assessed using the fluorescently labeled wildtype SARS-CoV-2 (icSARS-CoV-2-mNG) in Caco-2 host cells. RESULTS: Our in silico docking suggests that the purified hop compounds bind to the active site of SARS-CoV-2 PLpro blocking the access of its natural substrates. The hop-derived compounds inhibit SARS-CoV-2 PLpro with half maximal inhibitory concentration (IC50) values in the range of 59-162 µM. Furthermore, we demonstrate that XN and 6-PN, in particular, impede viral replication with IC50 values of 3.3 µM and 7.3 µM, respectively. CONCLUSION: In addition to the already known inhibition of Mpro by XN, our results show, for the first time, that hop-derived compounds target also SARS-CoV-2 PLpro which is a promising therapeutic target as it contributes to both viral replication and modulation of the immune system. These findings support the possibility to develop new hop-derived antiviral drugs targeting human coronaviruses.


Subject(s)
COVID-19 , Coronavirus Papain-Like Proteases , Flavonoids , Humulus , Propiophenones , Humans , Humulus/chemistry , Caco-2 Cells , Scattering, Small Angle , SARS-CoV-2 , X-Ray Diffraction , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
13.
Am J Respir Crit Care Med ; 209(8): 947-959, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38064241

ABSTRACT

Rationale: The strongest genetic risk factor for childhood-onset asthma, the 17q21 locus, is associated with increased viral susceptibility and disease-promoting processes.Objectives: To identify biological targets underlying the escalated viral susceptibility associated with the clinical phenotype mediated by the 17q21 locus.Methods: Genome-wide transcriptome analysis of nasal brush samples from 261 children (78 healthy, 79 with wheezing at preschool age, 104 asthmatic) within the ALLIANCE (All-Age-Asthma) cohort, with a median age of 10.0 (range, 1.0-20.0) years, was conducted to explore the impact of their 17q21 genotype (SNP rs72163891). Concurrently, nasal secretions from the same patients and visits were collected, and high-sensitivity mesoscale technology was employed to measure IFN protein levels.Measurements and Main Results: This study revealed that the 17q21 risk allele induces a genotype- and asthma/wheeze phenotype-dependent enhancement of mucosal GSDMB expression as the only relevant 17q21-encoded gene in children with preschool wheeze. Increased GSDMB expression correlated with the activation of a type-1 proinflammatory, cell-lytic immune, and natural killer signature, encompassing key genes linked to an IFN type-2-signature (IFNG, CXCL9, CXCL10, KLRC1, CD8A, GZMA). Conversely, there was a reduction in IFN type 1 and type 3 expression signatures at the mRNA and protein levels.Conclusions: This study demonstrates a novel disease-driving mechanism induced by the 17q21 risk allele. Increased mucosal GSDMB expression is associated with a cell-lytic immune response coupled with compromised airway immunocompetence. These findings suggest that GSDMB-related airway cell death and perturbations in the mucosal IFN signature account for the increased vulnerability of 17q21 risk allele carriers to respiratory viral infections during early life, opening new options for future biological interventions.The All-Age-Asthma (ALLIANCE) cohort is registered at www.clinicaltrials.gov (pediatric arm, NCT02496468).


Subject(s)
Asthma , Child, Preschool , Child , Humans , Infant , Adolescent , Young Adult , Adult , Aged, 80 and over , Genotype , Phenotype , Alleles , RNA, Messenger , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics
14.
Cytokine ; 173: 156452, 2024 01.
Article in English | MEDLINE | ID: mdl-38039695

ABSTRACT

BACKGROUND: Obesity is known to be a pro-inflammatory condition affecting multiple organs. Obesity as a systemic pro-inflammatory state, might be associated with bronchial inflammation in non-smoking adolescents with a BMI ≥ 30 kg/m2 without evidence of concomitant chronic diseases. MATERIALS AND METHODS: We studied non-asthmatic obese patients (n = 20; median age 15.8 years; BMI 35.0 kg/m2) compared to age matched healthy control subjects (n = 20; median age 17.5 years; BMI 21.5 kg/m2). Induced sputum differential cell counts and sputum mRNA levels were assessed for all study subjects. Serum levels of CRP, IL-6, and IL-8 were measured. Further, IL-5, IL-6, IL-8, IL-13, IL-17, TNF-α, IFN-γ, and IP-10 protein levels were analyzed in induced sputum was. RESULTS: Serum CRP levels, sputum inflammatory cell load and sputum eosinophils differed significantly between obese and non-obese subjects, for sputum neutrophils, a correlation was shown with BMI ≥ 30 kg/m2. Differences were also observed for sputum mRNA expression of IL6, IL8, IL13, IL17, IL23, and IFN-γ, as well as the transcription factors T-bet, GATA3, and FoxP3. CONCLUSIONS: Increased bronchial inflammation, triggered by systemic or local inflammatory effects of obesity itself, may account for the higher rates of airway disease in obese adolescents.


Subject(s)
Asthma , Pediatric Obesity , Humans , Adolescent , Asthma/metabolism , Interleukin-8/metabolism , Interleukin-6/metabolism , Pediatric Obesity/metabolism , Inflammation/metabolism , Sputum/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
Pediatr Blood Cancer ; 71(3): e30821, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38148490

ABSTRACT

BACKGROUND AND AIMS: Nuclear protein of the testis (NUT) carcinoma (NC) is a rare and highly aggressive tumor defined by the presence of a somatic NUTM1 rearrangement, occurring mainly in adolescents and young adults. We analyzed the clinical and biological features of German pediatric patients (≤18 years) with NC. METHODS: This study describes the characteristics and outcome of 11 children with NC registered in the German Registry for Rare Pediatric Tumors (STEP). RESULTS: Eleven patients with a median age of 13.2 years (range 6.6-17.8) were analyzed. Malignant misdiagnoses were made in three patients. Thoracic/mediastinal tumors were found to be the primary in six patients, head/neck in four cases; one patient had multifocal tumor with an unknown primary. All patients presented with regional lymph node involvement, eight patients (72.7%) with distant metastases. Seven patients underwent surgery, eight radiotherapy with curative intent; polychemotherapy was administered in all patients. Novel treatment strategies including immunotherapy, targeted therapies, and virotherapy were applied in three patients. Median event-free survival and overall survival were 1.5 and 6.5 months, respectively. CONCLUSIONS: Every undifferentiated or poorly differentiated carcinoma should undergo testing for the specific rearrangement of NUTM1, in order to initiate an intense therapeutic regimen as early as possible. As in adults, only few pediatric patients with NC achieve prolonged survival. Thus, novel therapeutic strategies should be included and tested in clinical trials.


Subject(s)
Carcinoma , Thoracic Neoplasms , Male , Young Adult , Adolescent , Humans , Child , Neoplasm Proteins , Transcription Factors , Testis/pathology
16.
Pathologie (Heidelb) ; 44(Suppl 2): 86-95, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38047950

ABSTRACT

BACKGROUND: Regulation (EU) 2017/746 on in vitro diagnostic medical devices (IVDR) imposes several conditions on pathology departments that develop and use in-house in vitro diagnostic medical devices (IH-IVDs). However, not all of these conditions need to be implemented immediately after the IVDR entered into force on 26 May 2022. Based on an amending regulation of the European Parliament and the Council of the European Union, the requirements for IH-IVDs will be phased in. Conformity with the essential safety and performance requirements of annex I must be ensured from May 2022. OBJECTIVES: With this article, we would like to present the practical implementation of the currently valid conditions for IH-IVDs at the Institute of Pathology at the University Hospital of Heidelberg, in order to provide possible assistance to other institutions. CONCLUSIONS: In addition to the intensive work on the requirements for IH-IVDs, several guidance documents and handouts provide orientation for the implementation and harmonisation of the requirements for healthcare institutions mentioned in Article 5 (5). Exchange in academic network structures is also of great importance for the interpretation and practical implementation of the IVDR. For university and nonuniversity institutions, ensuring conformity with the IVDR represents a further challenge in terms of personnel and time, in addition to the essential tasks of patient care, teaching and research and the further development of methods for optimal and targeted diagnostics, as well as the maintenance of the constantly evolving quality management system.


Subject(s)
Reagent Kits, Diagnostic , Humans , European Union
17.
Res Sq ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076920

ABSTRACT

Skin employs interdependent cellular networks to facilitate barrier integrity and host immunity through ill-defined mechanisms. This study demonstrates that manipulation of itch-sensing neurons bearing the Mas-related G protein-coupled receptor A3 (MrgprA3) drives IL-17+ γδ T cell expansion, epidermal thickening, and resistance to the human pathogen Schistosoma mansoni through mechanisms that require myeloid antigen presenting cells (APC). Activated MrgprA3 neurons instruct myeloid APCs to downregulate interleukin 33 (IL-33) and up-regulate TNFα partially through the neuropeptide calcitonin gene related peptide (CGRP). Strikingly, cell-intrinsic deletion of IL-33 in myeloid APC basally alters chromatin accessibility at inflammatory cytokine loci and promotes IL-17/23-dependent epidermal thickening, keratinocyte hyperplasia, and resistance to helminth infection. Our findings reveal a previously undescribed mechanism of intercellular cross-talk wherein "itch" neuron activation reshapes myeloid cytokine expression patterns to alter skin composition for cutaneous immunity against invasive pathogens.

18.
Pathologie (Heidelb) ; 44(6): 381-391, 2023 Nov.
Article in German | MEDLINE | ID: mdl-37792098

ABSTRACT

BACKGROUND: Regulation (EU) 2017/746 on in vitro diagnostic medical devices (IVDR) imposes several conditions on pathology institutes that develop and use in-house in vitro diagnostic medical devices (IH-IVDs). However, not all of these conditions need to be implemented immediately after the IVDR entered into force on 26 May 2022. Based on an amending regulation of the European Parliament and the Council of the European Union, the requirements for IH-IVDs will be phased in. Conformity with the essential safety and performance requirements of annex I must be ensured from May 2022. OBJECTIVES: With this article, we would like to present the practical implementation of the currently valid conditions for IH-IVDs at the Institute of Pathology at the University Hospital of Heidelberg, in order to provide possible assistance to other institutions. CONCLUSIONS: In addition to the intensive work on the requirements for IH-IVDs, several guidance documents and handouts provide orientation for the implementation and harmonisation of the requirements for healthcare institutions mentioned in Article 5 (5). Exchange in academic network structures is also of great importance for the interpretation and practical implementation of the IVDR. For university and nonuniversity institutions, ensuring conformity with the IVDR represents a further challenge in terms of personnel and time, in addition to the essential tasks of patient care, teaching and research and the further development of methods for optimal and targeted diagnostics, as well as the maintenance of the constantly evolving quality management system.


Subject(s)
Reagent Kits, Diagnostic , Humans , European Union
19.
Exp Ther Med ; 26(5): 523, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37854502

ABSTRACT

Myasthenia gravis (MG) is a heterogeneous autoimmune disease, which is characterized by a postsynaptic neuromuscular transmission defect, with antibodies directly targeting the acetylcholine receptor (AChR) or other structural proteins of the neuromuscular junction. The majority of MG cases are associated with thymic pathologies, including thymoma, thyroiditis, autoimmune diseases or malignant hematologic neoplasia. The present study reported a rare case of AChR-positive and late-onset ocular MG, which rapidly progressed to a generalized myasthenic syndrome as an initial presentation of a pancreatic neuroendocrine neoplasia (pNEN). Following complete surgical resection of the pNEN, the myasthenic syndrome was improved and the anti-AChR antibody titers were reduced. It has been reported that MG is a paraneoplastic syndrome in thymic neoplasms and less common in hematologic malignancies. However, currently, only few cases of MG as initial presentation of a solid tumor, and more particular of a neuroendocrine neoplasm, have been reported in the literature. In conclusion, surveillance for extrathymic solid malignancies in newly diagnosed patients with MG could promote the early diagnosis of associated tumor diseases.

20.
J Med Chem ; 66(22): 15073-15083, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37822271

ABSTRACT

Pre-SARS-CoV-2, tuberculosis was the leading cause of death by a single pathogen. Repetitive exposure of Mycobacterium tuberculosis(Mtb) supported the development of multidrug- and extensively drug-resistant strains, demanding novel drugs. Hyperforin, a natural type A polyprenylated polycyclic acylphloroglucinol from St. John's wort, exhibits antidepressant and antibacterial effects also against Mtb. Yet, Hyperforin's instability limits the utility in clinical practice. Here, we present photo- and bench-stable type B PPAPs with enhanced antimycobacterial efficacy. PPAP22 emerged as a lead compound, further improved as the sodium salt PPAP53, drastically enhancing solubility. PPAP53 inhibits the growth of virulent extracellular and intracellular Mtb without harming primary human macrophages. Importantly, PPAP53 is active against drug-resistant strains of Mtb. Furthermore, we analyzed the in vitro properties of PPAP53 in terms of CYP induction and the PXR interaction. Taken together, we introduce type PPAPs as a new class of antimycobacterial compounds, with remarkable antibacterial activity and favorable biophysical properties.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Terpenes/pharmacology , Anti-Bacterial Agents/pharmacology , Antitubercular Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...