Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 353(1): 188-95, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-20888571

ABSTRACT

Monte Carlo simulations with an explicit description of counterions are performed to investigate the adsorption of ionic surfactants at the interface between water and soft hydrophobic and penetrable particles. The surfactant molecules are represented at a coarse-grained level, their hydrophobic tails interact with each other through a Lennard-Jones potential, whereas their hydrophilic head and their counterions interact through a Coulombic potential. Two colloidal hydrophobic particles interact with the surfactant hydrophobic chains through a modified Lennard-Jones potential. By increasing the surfactant confinement between non-adsorbing colloidal particles, micellization is achieved and the micelle aggregation number is found to increase. Adsorption isotherms are determined for various interaction strengths between the surfactants and the particles. It is found that increasing this parameter increases the level of the adsorption plateau. The adsorbed surfactant molecules form conical aggregates which evolve into elongated structures by increasing the surfactant concentration and the strength of the interaction. The presence of micelles in solution is shown to be controlled by the level of adsorption and saturation of the hydrophobic particle surfaces. This study provides for the first time a comparison of surfactant micellization in solution and aggregate formation at one interface by considering hydrophobic and electrostatic interactions.

2.
J Chem Phys ; 131(17): 174704, 2009 Nov 07.
Article in English | MEDLINE | ID: mdl-19895032

ABSTRACT

The formation of complexes between nanoparticles and polyelectrolytes is a key process for the control of the reactivity of manufactured nanoparticles and rational design of core shell nanostructures. In this work, we investigate the influence of the nanoparticle dielectric constant on the adsorption of a linear charged polymer (polyelectrolyte) at the surface of a neutral nanoparticle. The polyelectrolyte linear charge density, as well as the image charges in the nanoparticle due to the dielectric discontinuity, is taken into account. Monte Carlo simulations are used to predict the adsorption/desorption limits and system properties. Effects of the nanoparticle size and polyelectrolyte length are also investigated. The polyelectrolyte is found adsorbed on the nanoparticle when the dielectric constant of the nanoparticle is greater than the dielectric constant of the medium. Attractive interactions induced by the presence of opposite sign image charges are found strong enough to adsorb the polyelectrolyte showing that the reaction field contribution has to be considered. The affinity between the polyelectrolyte and the nanoparticle is found to increase in magnitude by increasing the nanoparticle size and dielectric constant. The reaction field magnitude is also found to depend in a nonlinear way from the polyelectrolyte length.

3.
Environ Sci Technol ; 43(19): 7265-9, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19848132

ABSTRACT

Humic substances (HS) play an important role in the reactivity and transport of colloids in natural environments. In particular, the presence of fulvic acids (FA) in natural waters modifies the interactions between inorganic particles and biopolymers and makes difficult to predict their stability with regard to aggregation processes. In this study, Brownian dynamics (BD) modeling is applied to quantify the interactions between negatively charged FA and (i) a positively charged inorganic particle and (ii) a rigid neutral polysaccharide in aqueous solutions. Hematite and schizophyllan are respectively used as model colloids. Modeling the adsorption of FA at the hematite particle surface and on the polysaccharide is based on van der Waals attractive forces and electrostatic interactions. Possible applications of the model, however, are not restricted to this system and any interaction potential or colloidal particle can be considered. The competition between FA adsorption and FA homocoagulation in solution is studied as function of the solution ionic strength. Results show that, under the conditions used, the amount of adsorbed FA is largely controlled by the solution ionic strength. At low ionic strength the amount of adsorbed FA is limited by the electrostatic repulsion between FA at the colloid surfaces and FA monolayers are formed. By increasing the ionic strength the number of adsorbed FA is found to increase. At a sufficiently large ionic strength, however, FA coagulation in solution may strongly compete with FA adsorption at the hematite and polysaccharide surfaces. FA aggregates then adsorb at the colloid surfaces to form extended and porous structures. Results also suggest that FA adsorption and structure of the adsorbed layers are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions.


Subject(s)
Benzopyrans/chemistry , Colloids/chemistry , Adsorption , Computer Simulation , Models, Chemical , Sizofiran/chemistry
4.
J Colloid Interface Sci ; 322(2): 660-8, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18387618

ABSTRACT

It is well known that the electrostatic repulsions between charges on neighboring sites decrease the effective charge at the surface of a charged nanoparticle (NP). However, the situation is more complex close to a dielectric discontinuity, since charged sites are interacting not only with their neighbors but also with their own image charges and the image charges of all neighbors. Titrating site positions, solution ionic concentration, dielectric discontinuity effects, and surface charge variations with pH are investigated here using a grand canonical Monte Carlo method. A Tanford and Kirkwood approach is used to calculate the interaction potentials between the discrete charged sites. Homogeneous, heterogeneous, and patch site distributions are considered to reproduce the various titrating site distributions at the solid/solution interface of spherical NPs. By considering Coulomb, salt, and image charges effects, results show that for different ionic concentrations, modifications of the dielectric constant of NPs having homogeneous and heterogeneous site distributions have little effect on their charging process. Thus, the reaction field, due to the presence of image charges, fully counterbalances the Coulomb interactions. This is not the case for patch distributions, where Coulomb interactions are not completely counterbalanced by the reaction field. Application of the present model to pyrogenic silica is also performed and comparison is made with published experimental data of titration curves at various ionic concentrations.

5.
J Phys Chem B ; 111(29): 8459-67, 2007 Jul 26.
Article in English | MEDLINE | ID: mdl-17411088

ABSTRACT

The conformation and titration curves of weak polyampholytes are examined using Monte Carlo simulations with screened Coulomb potentials in the Grand Canonical ensemble. Two different types of monomers are considered. Depending on the solution pH, monomers A are weak acidic sites that can either be negatively charged or uncharged (as carboxylic groups), whereas monomers B are weak basic sites that can either be positively charged or uncharged (as amino groups). The influence of the chain stiffness, primary structure, and ionic concentration on the acid/base properties of the polyampholyte chains are systematically investigated. By adjusting the pH values, titration curves and then the fractions of positively and negatively ionized charged monomers are calculated. Stiffness influence is estimated by comparing two models of chain: a fully flexible and a rod-like polyampholyte. Different primary structures such as statistical (diblock, octablock, and alternating) and random polyampholytes are also considered. We demonstrate that the primary structure plays important roles in the acid/base properties as well as the charge distribution along the polymer backbone of a statistical rod-like polyampholyte. When flexible polyampholytes are considered, polyampholyte conformations promote the attractive electrostatic interactions between positively and negatively charged monomers, hence leading to more or less compact conformations and acid/base properties relatively different in comparison to the rod-like polyampholytes. Various conformations such as extended, globular, and pearl-necklace conformations are found in good agreement with the literature by adjusting the interaction parameter between monomers and monomer stoichiometry.

6.
Biomacromolecules ; 8(1): 106-12, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17206795

ABSTRACT

Insight into the conformations and aggregation of alginic acid was gained by measuring its diffusion coefficient at very dilute concentrations using fluorescence correlation spectroscopy. Both the pH and ionic strength (I) had an important influence on the diffusion coefficient of the polysaccharide. For pH, three effects were isolated: (i) below pH 4, the charge density decreased causing increased aggregation; (ii) between pH 4 and 8, a molecular expansion was observed with increasing pH, whereas (iii) above pH 8 some dissociation of the polymer was observed. Increasing I from 0.001 to 0.1 M resulted in a ca. 20% increase in the diffusion coefficient. By coupling these measurements to molar mass determinations obtained by size exclusion chromatography and monomer size estimations determined from ab initio calculations, it was possible to determine the radii of gyration via de Gennes renormalization theory. From diffusion coefficients and radii of gyration obtained as a function of ionic strength, persistence lengths (total, electrostatic, and intrinsic) were calculated from the Benoit-Doty relationship.


Subject(s)
Alginates/chemistry , Biochemistry/methods , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration , Ions , Macrocystis/metabolism , Macromolecular Substances , Models, Chemical , Models, Statistical , Molecular Conformation , Polymers/chemistry , Spectrometry, Fluorescence/methods
7.
Phys Chem Chem Phys ; 8(48): 5679-88, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17149489

ABSTRACT

The surface site distribution and the dielectric discontinuity effects on the charging process of a spherical nanoparticle (NP) have been investigated. It is well known that electrostatic repulsion between charges on neighbouring sites tends to decrease the effective charge of a NP. The situation is more complicated close to a dielectric breakdown, since here a charged site is not only interacting with its neighbours but also with its own image charge and the image charges of all its neighbours. Coexistence of opposite charges, titration sites positions, and pH dependence are systematically studied using a grand canonical Monte Carlo method. A Tanford and Kirkwood approach has been applied to describe the interaction potentials between explicit discrete ampholytic charging sites. Homogeneous, heterogeneous and patch site distributions were considered to reproduce the titration site distribution at the solid/solution interface of natural NPs. Results show that the charging process is controlled by the balance between Coulomb interactions and the reaction field through the solid-liquid interface. They also show that the site distribution plays a crucial role in the charging process. In patch distributions, charges accumulate at the perimeter of each patch due to finite size effects. When homogeneous and heterogeneous distributions are compared, three different charging regimes are obtained. In homogeneous and heterogeneous (with quite low polydispersity indexes) distributions, the effects of the NP dielectric constant on Coulomb interactions are counterbalanced by the reaction field and in this case, the dielectric breakdown has no significant effect on the charging process. This is not the case in patch distributions, where the dielectric breakdown plays a crucial role in the charging process.


Subject(s)
Monte Carlo Method , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Static Electricity , Surface Properties
8.
J Phys Chem B ; 110(42): 20954-64, 2006 Oct 26.
Article in English | MEDLINE | ID: mdl-17048913

ABSTRACT

Monte Carlo simulations have been used to study two different models for a weak linear polyelectrolyte in the presence of nanoparticles: (i) a rodlike and (ii) a flexible polyelectrolytes. The use of simulated annealing has made it possible to simulate a polyelectrolyte chain in the presence of several nanoparticles by improving conformation sampling and avoiding multiple minima problems when dense conformations are produced. Nanoparticle distributions along the polymer backbone were analyzed versus the ionic concentration, polyelectrolyte stiffness, and nanoparticle surface charge. Titration curves were calculated and the influences of the ionic concentration, solution pH, and number of adsorbed nanoparticles on the acid/base polyelectrolyte properties have been systematically investigated. The subtle balance of attractive and repulsive interactions has been discussed, and some characteristic conformations are presented. The comparison of the two limit models provides a good representation of the stiffness influence on the complex formation. In some conditions, overcharging was obtained and presented with respect to both the polyelectrolyte and nanoparticle as the central element. Finally, the charge mobility influence along the polyelectrolyte backbone was investigated by considering annealed and quenched polyelectrolyte chains.

9.
Biomacromolecules ; 7(4): 1025-35, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16602717

ABSTRACT

The binding affinities of polyanions for bovine serum albumin in NaCl solutions from I = 0.01-0.6 M, were evaluated on the basis of the pH at the point of incipient binding, converting each such pH(c) value into a critical protein charge Zc. Analogous values of critical charge for mixed micelles were obtained as the cationic surfactant mole fraction Yc. The data were well fitted as Yc or Zc = KI a, and values of K and a were considered as a function of normalized polymer charge densities (tau), charge mobility, and chain stiffness. Binding increased with chain flexibility and charge mobility, as expected from simulations and theory. Complex effects of tau were related to intrapolyanion repulsions within micelle-bound loops (seen in the simulations) or negative protein domain-polyanion repulsions. The linearity of Zc with radicalI at I < 0.3 M was explained by using protein electrostatic images, showing that Zc at I < 0.3 M depends on a single positive "patch"; the appearance of multiple positive domains I > 0.3 M (lower pH(c)) disrupts this simple behavior.


Subject(s)
Electrolytes/chemistry , Serum Albumin, Bovine/chemistry , Animals , Anions/chemistry , Binding Sites , Cattle , Hydrogen-Ion Concentration , Micelles , Models, Chemical , Sodium Chloride/chemistry , Solutions/chemistry , Static Electricity
10.
J Chem Phys ; 122(9): 094911, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15836185

ABSTRACT

The conformation and titration curves of weak (or annealed) hydrophobic polyelectrolytes have been examined using Monte Carlo simulations with screened Coulomb potentials in the grand canonical ensemble. The influence of the ionic concentration pH and presence of hydrophobic interactions has been systematically investigated. A large number of conformations such as extended, pearl-necklace, cigar-shape, and collapsed structures resulting from the subtle balance of short-range hydrophobic attractive interactions and long-range electrostatic repulsive interactions between the monomers have been observed. Titration curves were calculated by adjusting the pH-pK(0) values (pK(0) represents the intrinsic dissociation constant of an isolated monomer) and then calculating the ionization degree alpha of the polyelectrolyte. Important transitions related to cascades of conformational changes were observed in the titration curves, mainly at low ionic concentration and with the presence of strong hydrophobic interactions. We demonstrated that the presence of hydrophobic interactions plays an important role in the acid-base properties of a polyelectrolyte in promoting the formation of compact conformations and hence decreasing the polyelectrolyte degree of ionization for a given pH-pK(0) value.

SELECTION OF CITATIONS
SEARCH DETAIL
...