Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int Genet ; 49: 102390, 2020 11.
Article in English | MEDLINE | ID: mdl-32937255

ABSTRACT

This study describes a multi-laboratory validation of DNAxs, a DNA eXpert System for the data management and probabilistic interpretation of DNA profiles [1], and its statistical library DNAStatistX to which, besides the organising laboratory, four laboratories participated. The software was modified to read multiple data formats and the study was performed prior to the release of the software to the forensic community. The first exercise explored all main functionalities of DNAxs with feedback on user-friendliness, installation and general performance. Next, every laboratory performed likelihood ratio (LR) calculations using their own dataset and a dataset provided by the organising laboratory. The organising laboratory performed LR calculations using all datasets. The datasets were generated with different STR typing kits or analysis systems and consisted of samples varying in DNA amounts, mixture ratios, number of contributors and drop-out level. Hypothesis sets had the correct, under- and over-assigned number of contributors and true and false donors as person of interest. When comparing the results between laboratories, the LRs were foremost within one unit on log10 scale. The few LR results that deviated more had differences for the parameters estimated by the optimizer within DNAStatistX. Some of these were indicated by failed iteration results, others by a failed model validation, since unrealistic hypotheses were included. When these results that do not meet the quality criteria were excluded, as is in accordance with interpretation guidelines, none of the analyses in the different laboratories yielded a different statement in the casework report. Nonetheless, changes in software parameters were sought that minimized differences in outcomes, which made the DNAStatistX module more robust. Overall, the software was found intuitive, user-friendly and valid for use in multiple laboratories.


Subject(s)
DNA Fingerprinting , Laboratories , Likelihood Functions , Software , Data Management , Humans , Microsatellite Repeats , Statistics as Topic
2.
Forensic Sci Int Genet ; 47: 102304, 2020 07.
Article in English | MEDLINE | ID: mdl-32417726

ABSTRACT

Massively Parallel Sequencing (MPS) applied to forensic genetics allows the simultaneous analysis of hundreds of genetic markers and the access to full amplicon sequences which help to increase available allele diversity. Meanwhile, sequence variation within the repeat regions represents the majority of the allele diversity, flanking regions adjacent to the repeat core provide an additional degree of variation. The forensic genetics community needs access to population data, from relevant parts of the world that contain this new sequence diversity in order to perform statistical calculations. In this study, we report sequence-based Short Tandem Repeat (STR) and identity Single Nucleotide Polymorphism (iSNPs) allele data for 169 French individuals across 58 STRs and 92 SNPs included in the Verogen ForenSeq DNA Signature Prep kit. 42 STRs out of 58 showed an increased number of alleles due to sequence variation in the repeat motif and/or the flanking regions. D9S1122 showed the largest overall gain with an increase of observed heterozygosities of almost 25 %. The combined match probability combining 27 autosomal STRs and 91 identity SNPs was 1.11E-69. Sequence-based allele frequencies included in this publication will help forensic laboratories to increase the power of discrimination for identification, kinship analysis and mixture interpretation.


Subject(s)
DNA Fingerprinting/instrumentation , Genetics, Population , High-Throughput Nucleotide Sequencing , Chromosomes, Human, X , Chromosomes, Human, Y , Female , France , Gene Frequency , Humans , Likelihood Functions , Male , Microsatellite Repeats , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...