Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37930391

ABSTRACT

The unique properties of biosurfactants obtained from microbes, including their activity at extreme temperatures, make them more attractive than synthetic alternatives. Henceforth, the principle objective is to isolate and detect the antibacterial and antifungal activities of the biosurfactants produced from bacteria of the economically competitive mangrove ecosystem. Using the serial dilution method, 53 bacterial strains were recovered from the Manakudy mangrove forest in Kanyakumari, India, for the investigation. Different biosurfactant screening methods and morphological and biochemical tests were opted to select the potential biosurfactant producer. After the initial screening, two strains were discovered by 16S rRNA gene sequencing followed by extraction using chloroform: methanol (2:1) by the precipitation method. The partially purified biosurfactants were then screened for antimicrobial properties against pathogens including Mucor sp., Trichoderma sp. Morphological, biochemical, and 16S rRNA gene sequencing identified the two strains to be gram-positive, rod-shaped bacteria namely Virgibacillus halodentrificans CMST-ZI (GenBank Accession No.: OL336402.1) and Pseudomonas pseudoalcaligenes CMST-ZI (GenBank Accession No (10 K): OL308085.1). The two extracted biosurfactants viz., 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, as well as cycloheptane efficiently inhibited human pathogens, including Enterococcus faecalis, and fungi, including Mucor sp., Trichoderma sp., indicated by the formation of a zone of inhibition in pharmacological screening. Thus, there is a growing interest in the prospective application of these biosurfactants isolated from marine microbes, exhibiting antimicrobial properties which can be further studied as a potential candidate in biomedical studies and eco-friendly novel drug development.

2.
J Fish Dis ; 45(10): 1581-1592, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35810483

ABSTRACT

The main aim of the current study was to clone and express a new outer membrane protein (OMP) and haemolysin (hly) from a pathogenic Aeromonas hydrophila and to investigate their potential as a vaccine candidate against A. hydrophila infection in Rohu (Labeo rohita). The OMP and hly genes were cloned in pET-30b vector and recombinant plasmids pET-30b-OMP and pET-30b-hly were constructed, which were then transferred into Escherichia coli BL21 (DE3). The recombinant E. coli BL21 (DE3) was induced by IPTG, and the OMP and hly proteins were expressed highly. The proteins OMP and hly were estimated in 15% SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Their molecular weights were found to be 40 kD and 68 kD. The expressed proteins OMP and hly were purified by Ni-NTA His-Bind Resin column, and the immunogenicity was confirmed by Western blotting. The fishes (L. rohita) were divided into IV groups, and the group I fishes were treated with phosphate saline, the II and III group were immunized with the purified OMP and hly recombinant proteins, and the fishes were treated IV group with combined OMP and hly for 10 days. After 10 days of treatment, the fishes of all the four groups were challenged with virulent A. hydrophila. The results revealed that vaccinated fish showed significantly improved haematological profile, phagocytic activity, myeloperoxidase activity and total immunoglobulin levels on the 5th and 10th days. The non-vaccinated group (Group I) showed 100% mortality, whereas the mixture of recombinant OMP (r-OMP) and hly (r-hly) protein-treated groups (Group IV) exhibited higher survival rate (80%). Relatively, expression of pro- and anti-inflammatory cytokines (IL-1ß, IL-10 and TGF-ß), c-type and g-type lysozymes were significantly up-regulated in heart and kidney of vaccinated groups compared with the non-vaccinated group. Our results revealed that OMP and hly genes were effective vaccine candidates in the aquaculture system and could be used as recombinant subunit vaccine for diseases caused by pathogenic A. hydrophila.


Subject(s)
Cyprinidae , Fish Diseases , Gram-Negative Bacterial Infections , Aeromonas hydrophila , Animals , Bacterial Vaccines , Escherichia coli , Fish Diseases/prevention & control , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/veterinary , Hemolysin Proteins/genetics , Recombinant Proteins/metabolism , Vaccines, Synthetic
3.
World J Microbiol Biotechnol ; 36(5): 66, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32323057

ABSTRACT

The haloalkaliphilics are an important subset of extremophiles that grow in salt [upto 33% (wt/vol) NaCl] and alkaline pH (> 9). They are found in hypersaline environments especially in the brines in arid, coastal and deep sea locations, and in alkaline environments, such as soda soils, lakes and deserts. Some authors have described haloalkaliphilic bacteria as moderate halophilic bacteria, but the molecular and classical studies revealed that they belong to moderately to extremely halophilic bacteria and archaea. Organic solutes, such as glycine, betaine and other amino acid derivatives, sugars such as, sucrose and trehalose, and sugar alcohols present in the haloalkaliphilics help for their osmoadaptation, and also serve as stabilizers. Haloalkalphilics secrete exoenzymes like proteases, amylases, xylanases, cellulases and peroxidases which have potential industrial applications. They also produce bacteriorhodopsin, compatible solutes, pigments, biopolymers, secondary metabolites like biosurfactants, polyhydroxyalkanoate (PHA) and exopolysaccharides and antimicrobial/anticancer compounds. They have unique metabolic pathways which can be used to treat industrial pollutants, heavy metals and waste water.


Subject(s)
Adaptation, Physiological , Bacteria/classification , Bioprospecting , Extremophiles/classification , Sodium Chloride/analysis , Archaea/metabolism , Bacteria/enzymology , Bacterial Proteins/metabolism , Biodegradation, Environmental , Biodiversity , Desert Climate , Extremophiles/enzymology , Hydrogen-Ion Concentration , Lakes/chemistry , Lakes/microbiology , Metabolic Networks and Pathways , Soil/chemistry , Soil Microbiology , Water Microbiology
4.
J Basic Microbiol ; 59(3): 288-301, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30604885

ABSTRACT

Antagonistic haloalkaliphilic Nocardiopsis sp. AJ1 (GenBank JX575136.1), isolated and identified from the saline soil of Kovalam solar salterns was able to produce antimicrobial secondary metabolites and effectively suppressed several bacterial and fungal pathogens. The metabolite extracted from ethyl acetate precipitation suppressed the bacterial and fungal pathogens to the range between 2.14 and 20.14 mm and also controlled the shrimp killer virus WSSV by 83% than the control and significantly (p < 0.05) differed. GC-MS analysis revealed that, the ethyl acetate precipitation contains pyrrolo (1,2-A(pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-) and actinomycin C2. Non ribosomal peptide synthetase (NRPS) was amplified by PCR with the amplicon size of 750-800 bp length and further predicted the secondary structure by Iterative Threading Assembly Refinement (I-TASSER) bioinformatics approach. I-TASSER prediction helped to find out the secondary, 3-D structure, and ligand binding sites. The top ten modelling concluded that, the NRPS gene is closely similar to surfactin synthesizing gene, surfactin A synthetase C (SRFA-C). The findings revealed that, the active compounds from the secondary metabolites effectively suppressed the pathogenic bacteria, fungi, and virus and useful to develop antimicrobials.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteria/drug effects , Fungi/drug effects , Nocardia/chemistry , Nocardia/isolation & purification , Viruses/drug effects , Acetates/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Dactinomycin/analogs & derivatives , Dactinomycin/chemistry , Microbial Sensitivity Tests , Models, Molecular , Nocardia/classification , Nocardia/genetics , Peptide Synthases/chemistry , Peptide Synthases/genetics , Phylogeny , Pyrazines/chemistry , Pyrroles/chemistry , RNA, Ribosomal, 16S/genetics , Salinity , Soil Microbiology
5.
J Basic Microbiol ; 58(7): 597-608, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29775199

ABSTRACT

Bioemulsifier (BE)-producing Haererehalobacter sp. JS1 was isolated and identified from the solar salt works in India. The BE was extracted, purified, and characterized by Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Emulsification activity was performed against different oils and dye degradation potential against different dyes. The production of BE was optimized using different carbon sources (C), nitrogen sources (N), pH, and NaCl. BE screening methods revealed that, Haererehalobacter sp. JS1 was highly positive BE production. Identification by 16S rRNA sequencing and analyses was found that, the Haererehalobacter sp. JS1 was closely related to Salinicoccus halophilus and Haererehalobacter sp. The structural characterization analysis confirmed that the partially purified bioemulsifier belongs to siloxane-type. Emulsification activity (E24) revealed that the bioemulsifier significantly (p < = 0.001) emulsified the commercial oils including coconut oil, gingelly oil, olive oil, and palmolein oils. Haererehalobacter sp. JS1 also significantly (p < = 0.001) degraded the dyes such as orange MR, direct violet, cotton red, reactive yellow, nitro green, and azo dye. RSM regression co-efficient and contour plot analysis clearly indicated that the combination of pH and NaCl helped to increase BE production. Siloxane-type of BE obtained from Haererehalobacter sp. JS1 was able to emulsify different oils and commercial dyes.


Subject(s)
Emulsifying Agents/metabolism , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/physiology , Salt Tolerance , Biodegradation, Environmental , Chromatography, Gas , Emulsifying Agents/analysis , Emulsions , Gammaproteobacteria/classification , Halobacteriaceae/classification , Halobacteriaceae/isolation & purification , Halobacteriaceae/physiology , Hydrogen-Ion Concentration , India , Phylogeny , RNA, Ribosomal, 16S/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...