Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Stem Cells Dev ; 18(2): 307-19, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18554088

ABSTRACT

Human neural stem cells offer the hope that a cell therapy treatment for Parkinson's disease (PD) could be made widely available. In this study, we describe two clonal human neural cell lines, derived from two different 10-week-old fetal mesencephalic tissues and immortalized with the c-mycER(TAM) transgene. Under the growth control of 4-hydroxytamoxifen, both cell lines display stable long-term growth in culture with a normal karyotype. In vitro, these nestin-positive cells are able to differentiate into tyrosine hydroxylase (TH)-positive neurons and are multipotential. Implantation of the undifferentiated cells into the 6-OHDA substantia nigral lesioned rat model displayed sustained improvements in a number of behavioral tests compared with noncell-implanted, vehicle-injected controls over the course of 6 months. Histological analysis of the brains showed survival of the implanted cells but no evidence of differentiation into TH-positive neurons. An average increase of approximately 26% in host TH immunoreactivity in the lesioned dorsal striatum was observed in the cell-treated groups compared to controls, with no difference in loss of TH cell bodies in the lesioned substantia nigra. Further analysis of the cell lines identified a number of expressed trophic factors, providing a plausible explanation for the effects observed in vivo. The exact mechanisms by which the implanted human neural cell lines provide behavioral improvements in the PD model are not completely understood; however, these findings provide evidence that cell therapy can be a potent treatment for PD acting through a mechanism independent of dopaminergic neuronal cell replacement.


Subject(s)
Behavior, Animal/physiology , Mesencephalon/transplantation , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Prosthesis Implantation , Proto-Oncogene Proteins c-myc/metabolism , Tamoxifen/metabolism , Animals , Brain/enzymology , Brain/pathology , Cell Differentiation , Cell Line, Transformed , Cell Survival , Clone Cells , Disease Models, Animal , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Neurons/cytology , Rats , Rotarod Performance Test , Tyrosine 3-Monooxygenase/metabolism
3.
Mutagenesis ; 23(4): 299-308, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18388359

ABSTRACT

The cytosolic glutathione S-transferases (GSTs) comprise a pivotal enzyme system protecting the cell from electrophilic compounds. It plays a major role in the detoxication of the primary and dihydrodiol epoxides of polycyclic aromatic hydrocarbons (PAHs), so that modulation of this enzyme system by PAHs will impact on their carcinogenic activity. The potential of six structurally diverse PAHs, namely benzo[a]pyrene (B[a]P), fluoranthene, benzo[b]fluoranthene (B[b]F), dibenzo[a,l]pyrene, dibenzo[a,h]anthracene (D[a,h]A) and 1-methhylphenanthrene, to modulate hepatic GST activity was investigated in human precision-cut slices and compared to rat slices, a species frequently used in long-term carcinogenicity studies; changes were monitored at the activity, using three different substrates, protein and mRNA levels. When activity was monitored using the alpha-class selective 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, B[b]F was the only PAH that caused an increase in activity, which was accompanied by a rise in the Ya immunoreacting band. In rat slices, in addition to B[b]F, B[a]P and D[a,h]A also enhanced activity, being paralleled with increased levels of the Ya immunoreacting band. In the rat, all PAHs elevated mRNA levels. In both human and rat liver slices, only B[b]F enhanced activity when 1-chloro-2,4-dinitrobenzene (CDNB) served as substrate. To investigate tissue differences, similar studies were undertaken in precision-cut rat lung slices, incubated with PAHs under identical conditions, using CDNB, as this was the only substrate for which activity could be detected; none of the PAHs studied stimulated activity. It is concluded that some PAHs have the potential to induce GST activity in human liver tissue and that species and tissue differences exist in the induction of this enzyme system in the rat. However, the extent of induction of GST activity is very modest compared with the effect these compounds have on CYP1 expression, the family responsible for their bioactivation, and it is unlikely to compensate for the enhanced production of reactive intermediates.


Subject(s)
Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Liver/drug effects , Lung/drug effects , Polycyclic Aromatic Hydrocarbons/pharmacology , Animals , Benz(a)Anthracenes/pharmacology , Benzo(a)pyrene/pharmacology , Fluorenes/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Liver/enzymology , Liver/metabolism , Lung/enzymology , Lung/metabolism , Male , Nitrobenzenes/pharmacology , Organ Culture Techniques , RNA, Messenger/metabolism , Rats , Rats, Wistar , Up-Regulation/drug effects
4.
Mutat Res ; 640(1-2): 153-61, 2008 Apr 02.
Article in English | MEDLINE | ID: mdl-18336844

ABSTRACT

The potential of polycyclic aromatic hydrocarbons (PAHs) to modulate microsomal epoxide hydrolase activity, determined using benzo[a]pyrene 5-oxide as substrate, in human liver, was evaluated and compared to rat liver. Precision-cut liver slices prepared from fresh human liver were incubated with six structurally diverse PAHs, at a range of concentrations, for 24h. Of the six PAHs studied, benzo[a]pyrene, dibenzo[a,h]anthracene and fluoranthene gave rise to a statistically significant increase in epoxide hydrolase activity, which was accompanied by a concomitant increase in epoxide hydrolase protein levels determined by immunoblotting. The other PAHs studied, namely dibenzo[a,l]pyrene, benzo[b]fluoranthene and 1-methylphenanthrene, influenced neither activity nor enzyme protein levels. When rat slices were incubated under identical conditions, only benzo[a]pyrene and dibenzo[a,h]anthracene elevated epoxide hydrolase activity, which was, once again accompanied by a rise in protein levels. At the mRNA level, however, all six PAHs caused an increase, albeit to different extent. In rat, epoxide hydroxylase activity in lung slices was much lower than in liver slices. In lung slices, epoxide hydrolase activity was elevated following exposure to benzo[a]pyrene and dibenzo[a,l]pyrene and, to a lesser extent, 1-methylphenanthrene; similar observations were made at the protein level. At both activity and protein levels extent of induction was far more pronounced in the lung compared with the liver. It is concluded that epoxide hydrolase activity is an inducible enzyme by PAHs, in both human and rat liver, but induction potential by individual PAHs varies enormously, depending on the nature of the compound involved. Marked tissue differences in the nature of PAHs stimulating activity in rat lung and liver were noted. Although in the rat basal lung epoxide hydrolase activity is much lower than liver, it is more markedly inducible by PAHs.


Subject(s)
Epoxide Hydrolases/metabolism , Liver/drug effects , Liver/enzymology , Polycyclic Aromatic Hydrocarbons/toxicity , Animals , Enzyme Induction , Epoxide Hydrolases/genetics , Female , Humans , Lung/drug effects , Lung/enzymology , Male , Middle Aged , Organ Specificity , RNA, Messenger/analysis , Rats , Species Specificity
5.
Toxicol In Vitro ; 22(1): 128-45, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17920237

ABSTRACT

Exposure of precision-cut rat liver slices to six structurally diverse polycyclic aromatic hydrocarbons, namely benzo[a]pyrene, benzo[b]fluoranthene, dibenzo[a,h]anthracene, dibenzo[a,l]pyrene, fluoranthene and 1-methylphenanthrene, led to induction of ethoxyresorufin O-deethylase, CYP1A apoprotein and CYP1A1 mRNA levels, but to a markedly different extent. In liver slices, constitutive CYP1A1 mRNA levels were higher, as well as being markedly more inducible by PAHs, compared with CYP1B1, a similar profile to that observed in human liver slices following exposure to the PAHs. Increase in ethoxyresorufin O-deethylase and in CYP1A1 apoprotein levels was also observed when precision-cut rat lung slices were incubated with the same PAHs, the order of induction potency being similar to that observed in liver slices. Under the same conditions of exposure, CYP1B1 apoprotein levels were elevated in the lung. Up-regulation of CYP1A1 by the six PAHs correlated with their affinity for the Ah receptor, determined using the chemical-activated luciferase expression (CALUX) assay. It may be concluded that (a) precision-cut liver and lung slices may be used to assess the CYP1 induction potential of chemicals at the activity, apoprotein and mRNA levels; (b) rat is a promising surrogate animal for human in studies to evaluate CYP1 induction potential; (c) CYP1A1 is far more inducible than CYP1B1 in both rat liver and lung; (d) CYP1 up-regulation by PAHs is related to their affinity for the Ah receptor, and finally (e) computer analysis revealed that the ratio of molecular length/width is an important determinant of CYP1 induction potency among equiplanar PAHs.


Subject(s)
Aryl Hydrocarbon Hydroxylases/drug effects , Cytochrome P-450 CYP1A1/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Up-Regulation/drug effects , Animals , Apoproteins/drug effects , Apoproteins/metabolism , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1 , Enzyme Induction/drug effects , Female , Humans , Liver/drug effects , Liver/metabolism , Lung/drug effects , Lung/metabolism , Male , Middle Aged , Molecular Conformation , RNA, Messenger/metabolism , Rats , Rats, Wistar , Structure-Activity Relationship
6.
Mutagenesis ; 22(1): 55-62, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17151004

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) differ markedly in their carcinogenic potencies. Differences in transcriptomic responses upon PAH exposures might improve our current understanding of the differences in carcinogenicity, and therefore gene expression modulation by six PAHs in precision-cut rat liver slices was investigated. Gene expression modulation by benzo[a]pyrene (B[a]P), dibenzo[a,l]pyrene (DB[a,l]P), benzo[b]fluoranthene (B[b]F), fluoranthene (FA), dibenzo[a,h]anthracene (DB[a,h]A) and 1-methylphenanthrene (1-MPA) was assessed after 6- (B[a]P, DB[a,l]P) and 24-h (all compounds) exposure, using oligonucleotide arrays. DNA-adduct formation was determined using (32)P-post-labelling. The effects of PAHs on gene expression and on DNA-adduct formation were much more pronounced after 24-h exposure than after a 6-h exposure. Each compound induced gene expression changes dose-dependently and gene expression profiles were generally compound-specific. B[a]P, B[b]F and DB[a,h]A displayed comparable gene expression profiles, and so did DB[a,l]P, FA and 1-MPA. Only the carcinogenic PAHs (B[a]P, B[b]F, DB[a,l]P and DB[a,h]A) induced the oxidative stress pathway. DNA-adduct levels were: DB[a,l]P >> B[a]P > B[b]F > or = DB[a,h]A > FA > or = 1-MPA. The expression of only a few genes was found to correlate significantly with DNA-adduct formation, carcinogenic potency or Ah-receptor binding capacity (the last two taken from literature). These genes differed between the parameters. Our results indicate that PAHs generally induce a compound-specific response on gene expression and that discrimination of carcinogenic from non-carcinogenic compounds is partly feasible using this approach. Only at a specific pathway level, namely oxidative stress response, PAHs with high and low carcinogenic potency could be discriminated.


Subject(s)
DNA Adducts/biosynthesis , Gene Expression/drug effects , Liver/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Animals , Carcinogenicity Tests , Cluster Analysis , Dissection , Drug Evaluation, Preclinical , Gene Expression Profiling , Liver/metabolism , Male , Rats , Rats, Wistar
7.
Toxicology ; 231(1): 68-80, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17178432

ABSTRACT

The principal objective was to ascertain whether precision-cut tissue slices can be used to evaluate the potential of chemicals to induce CYP1, epoxide hydrolase and glutathione S-transferase activities, all being important enzymes involved in the metabolism of polycyclic aromatic hydrocarbons. Precision-cut rat liver and lung slices were incubated with a range of benzo[a]pyrene concentrations for various time periods. A rise in the O-deethylation of ethoxyresorufin was seen in both liver and lung slices exposed to benzo[a]pyrene, which was accompanied by increased CYP1A apoprotein levels. Pulmonary CYP1B1 apoprotein levels and hepatic mRNA levels were similarly enhanced. Elevated epoxide hydrolase and glutathione S-transferase activities were also observed in liver slices following incubation for 24h; similarly, a rise in apoprotein levels of both enzymes was evident, peak levels occurring at the same time point. When mRNA levels were monitored, a rise in the levels of both enzymes was seen as early as 4h after incubation, but maximum levels were attained at 24 h. In lung slices, induction of epoxide hydrolase by benzo[a]pyrene was observed after a 24-h incubation, and at a concentration of 1 microM; a rise in apoprotein levels was seen at this time point. Glutathione S-transferase activity was not inducible in lung slices by benzo[a]pyrene but a modest increase was observed in hepatic slices. Collectively, these studies confirmed CYP1A induction in rat liver slices and established that CYP1B1 expression, and epoxide hydrolase and glutathione S-transferase activities are inducible in precision-cut tissue slices.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Epoxide Hydrolases/metabolism , Glutathione Transferase/metabolism , Liver/metabolism , Lung/metabolism , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Benzo(a)pyrene/toxicity , Carcinogens, Environmental/toxicity , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1 , Cytosol/enzymology , Epoxide Hydrolases/genetics , Glutathione Transferase/genetics , Liver/drug effects , Lung/drug effects , Male , Microsomes, Liver/enzymology , Organ Culture Techniques , RNA, Messenger/metabolism , Rats , Rats, Wistar
8.
Toxicology ; 224(1-2): 14-21, 2006 Jul 05.
Article in English | MEDLINE | ID: mdl-16701934

ABSTRACT

The objective of the present study was to evaluate the stability of cytochrome P450 enzymes and of the conjugation enzyme systems epoxide hydrolase, glucuronosyl transferase, sulphotransferase and glutathione S-transferase in precision-cut rat lung slices incubated in RPMI media for different time periods up to 72 h. Moreover, the effect of culturing of lung slices on total glutathione levels and glutathione reductase was also investigated. Monitoring of cytochrome P450 activity was achieved using established diagnostic probes, but when activity in the lung was low the maintenance of the various enzymes in culture was determined immunologically using Western blotting. The dealkylation of pentoxyresorufin declined markedly during the first 4h of incubation but in the case of ethoxyresorufin loss of activity was more gradual and less severe. Western blot analysis revealed that the rate of decrease in cytochrome P450 apoprotein levels was isoform-specific with CYP2E1 being the most stable and CYP3A the least stable. Generally, phase II activities, especially cytosolic sulphotransferase, were relatively more stable throughout the incubation period compared with cytochromes P450. Finally, glutathione reductase activity and total glutathione levels were maintained throughout the 72 h incubation. The present studies indicate that xenobiotic-metabolising enzymes in precision-cut rat lung slices decline in culture, but the rate of loss differs and depends on the nature of the enzyme.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Lung/enzymology , Animals , Blotting, Western , Cytochrome P-450 Enzyme System/biosynthesis , Cytosol/enzymology , Enzyme Induction , Isoenzymes/biosynthesis , Isoenzymes/metabolism , Kinetics , Liver/metabolism , Male , Microsomes, Liver/enzymology , Organ Culture Techniques , Rats , Rats, Wistar
9.
Mutagenesis ; 20(1): 23-8, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15598702

ABSTRACT

Rats were exposed to black tea (2.5% w/v) as their sole drinking liquid for either 1 day (short-term) or 1 month (long-term), while controls received water. After exposure, all animals received a single oral dose of 6-aminochrysene and urine was collected for 72 h. Urinary mutagenicity was determined in the Ames test using an activation system comprising hepatic cytosol from Aroclor 1254-induced rats and utilizing the Salmonella typhimurium O-acetylase overexpressing bacterial strain YG1024. Both tea treatments suppressed the urinary excretion of indirect acting mutagens; no direct acting mutagenic activity was detectable. Furthermore, both tea treatments induced hepatic CYP1A2 activity, as exemplified by the O-demethylation of methoxyresorufin, when compared with the corresponding controls; similarly, an increase in CYP1A2 apoprotein levels was observed. The O-depentylation of pentoxyresorufin was also induced by the long-term tea treatment only, but the effect was less pronounced. No significant changes were seen in glutathione S-transferase and glucuronosyl transferase activities. When rats were exposed to caffeine at a dose level corresponding to that in black tea, a marked decrease was observed in the urinary excretion of indirect acting mutagens following a single oral dose of 6-aminochrysene. It is concluded that even after short-term exposure, black tea enhances the metabolism of 6-aminochrysene and that this is probably related to the up-regulation of hepatic CYP1A2 by the caffeine present in black tea. Finally, 6-aminochrysene was a potent inducer of CYP1A1, as assessed by the O-deethylation of ethoxyresorufin and immunoblot analysis. The same treatment modestly increased glutathione S-transferase activity when assessed using 1-chloro-2,4-dinitrobenzene as the accepting substrate.


Subject(s)
Antineoplastic Agents/pharmacology , Chrysenes/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Mutagens/metabolism , Tea/metabolism , Animals , Dose-Response Relationship, Drug , Rats , Urine/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...