Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biomater ; 2023: 9475956, 2023.
Article in English | MEDLINE | ID: mdl-37292172

ABSTRACT

This research aims to examine the characteristics of bulletproof vests from corncob oil palm empty fruit bunch (COPEFB) biocomposite, where mechanical, electrical, and physical resistance tests have been successfully conducted. The variations in the diameter of the twisted thread used to make the basic material for bulletproof vests include 1 mm, 3 mm, 6 mm, and 10 mm, which were tested for their mechanical, electrical, and physical properties. To identify which biocomposite is good at damping bullets, an impact and a firing test were carried out to determine the kinetic energy and the depth of the bullet, respectively. The results showed that the impact value improved with an increase in the diameter of the twisted yarn used. The largest and the lowest impact values were 1.157 kJ and 0.277 kJ on the epoxy sample with a twisted thread diameter of 10 mm and 1 mm, respectively. It was also discovered that the biocomposite samples made from 6 mm to 10 mm twisted threads were the best samples, impermeable to bullets. This was due to the excess natural fiber content which improved the flexibility and absorption of kinetic energy from the high rate of projectile bullets. According to the results of the firing test, some samples are translucent, while others cannot be penetrated by bullet projectiles. The projectile went inside, and the composite was damaged. All the high filler loading samples were translucent to bullets, while some of the low loading samples were translucent and impermeable to bullets. Based on these results, biocomposite samples made of 6 mm and 10 mm twisted yarn are the best samples that are impermeable to bullets.

2.
Polymers (Basel) ; 14(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35956722

ABSTRACT

The creative fashion industry produces several textile products that play an important role in the national economy. In various countries, this industry has continued to grow along with the strong flow of information technology and e-commerce. The development of textile products for fashion is very dynamic and competitive. Competition is not only about price, but also the quality of organic/synthetic materials, the comfort provided, and designs that change every 4−6 months. Recently, creative fashion not only relies on natural and synthetic polymer-made fibers but also biomass-based waste materials. Therefore, this study aims to manufacture textile products from biomass-based waste materials that can be applied to the creative fashion industry. Two types of raw materials from oil palm empty fruit bunches (EFB), namely, whole-empty fruit bunches (WEFB) and stalk-empty fruit bunches (SEFB), are used as an excellent innovation of rayon viscose fiber (RVF), a noncotton organic yarn capable of providing a solution to the 99% import of global cotton needs. This is expected to increase competitiveness, as well as the added value of palm oil products and their derivatives. The process of manufacturing DP chemically includes prehydrolysis, cooking, bleaching to dissolve the lignin and noncellulosic materials as well as isolation to purify POEFB fiber. Furthermore, DP testing is carried out to determine product quality and compare it with the national product standards. The results show that the alpha-cellulose content reaches >94% with variations in the active alkali of 18%, 20% and 24%. This implies that the WEFB and SEFB are used to fulfill the first requirements of the national standard (SNI 938:2017). The WEFB with an active alkali variation of 24% meets the SNI standard for rayon pulp with a value of S10 = 3.07 and S18 = 7.14%, while all variations of SEFB show opposite results. The use of active alkali at 24% had a brighter color than between 18% and 20%. Additionally, the fiber density of WEFB appears to be higher than that of SEFB. These results correlate positively with DP prepared using 24% alkali as the optimum treatment for all products, as well as the morphological observations performed with scanning electron microscopy (SEM), which shows that WEFB fixated fiber had a larger diameter than SEFB.

3.
Int J Biomater ; 2022: 9889127, 2022.
Article in English | MEDLINE | ID: mdl-35198027

ABSTRACT

Gelatin-free capsules are possibly produced through an innovation which involves utilizing environmentally friendly materials derived from plants such as bagasse which are produced into nanocrystalline cellulose (NCC). This research was conducted to report the extraction and characterization of NCC from the abundant industrial plantation waste of sugarcane and its application as the base material for gelatin-free capsule shell material. The process involved using different concentrations of NCC at 1%, 2%, 4%, and 7% (in wt. %) with the addition of 1% hydroxypropyl methylcellulose (HPMC) (in wt. %) and 1% carbopol (in wt. %). Moreover, the NCC capsules obtained from sugarcane bagasse were tested for moisture content, tensile strength, elongation, solubility, and pH. The results showed that sugarcane bagasse contains 40-50% cellulose, 6.15%-9.5% moisture content which indicates they are potentially better in terms of storage, 7.25-7.85 pH, and 0.05-0.136 MPa gel strength, and the elongation value ranges from 7.19 to 87.51%. These values were discovered to have satisfied the standard requirements as indicated by the optimal concentration of 4% NCC +1% HPMC, which is in line with the Japanese Industrial Standard (JIS), thereby leading to the consideration of the material safe to be used as raw material in making capsule shells.

SELECTION OF CITATIONS
SEARCH DETAIL
...