Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 15: 367-375, 2024.
Article in English | MEDLINE | ID: mdl-38590431

ABSTRACT

Desired modifications of surfaces at the nanoscale may be achieved using energetic ion beams. In the present work, a complete study of self-assembled ripple pattern fabrication on Si and Ge by 100 keV Ar+ ion beam bombardment is discussed. The irradiation was performed in the ion fluence range of ≈3 × 1017 to 9 × 1017 ions/cm2 and at an incident angle of θ ≈ 60° with respect to the surface normal. The investigation focuses on topographical studies of pattern formation using atomic force microscopy, and induced damage profiles inside Si and Ge by Rutherford backscattering spectrometry and transmission electron microscopy. The ripple wavelength was found to scale with ion fluence, and energetic ions created more defects inside Si as compared to that of Ge. Although earlier reports suggested that Ge is resistant to structural changes upon Ar+ ion irradiation, in the present case, a ripple pattern is observed on both Si and Ge. The irradiated Si and Ge targets clearly show visible damage peaks between channel numbers (1000-1100) for Si and (1500-1600) for Ge. The clustering of defects leads to a subsequent increase of the damage peak in irradiated samples (for an ion fluence of ≈9 × 1017 ions/cm2) compared to that in unirradiated samples.

2.
J Phys Condens Matter ; 33(31)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34132205

ABSTRACT

GaxZn1-xO thin films with varying Ga fraction within the solubility limit were irradiated with high-energy heavy ions to induce electronic excitations. The films show good transmittance in the visible region and a reduction of about 20% in transmittance was observed for irradiated films at higher ion fluences. The Urbach energy was estimated and showed an augmenting response upon increase in doping fraction and ion irradiation, this divulges an enhancement of localized states in the bandgap or disorder in the films. The evolution of such localized states plays a vital role in charge transport and thus the temperature dependent electrical conductivity of irradiated thin films was studied to elucidate the dominant conduction mechanisms. The detailed analysis unfolds that in the high-temperature regime (180 K

3.
Nat Commun ; 12(1): 1668, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33712582

ABSTRACT

Antiferromagnetic insulators are a ubiquitous class of magnetic materials, holding the promise of low-dissipation spin-based computing devices that can display ultra-fast switching and are robust against stray fields. However, their imperviousness to magnetic fields also makes them difficult to control in a reversible and scalable manner. Here we demonstrate a novel proof-of-principle ionic approach to control the spin reorientation (Morin) transition reversibly in the common antiferromagnetic insulator α-Fe2O3 (haematite) - now an emerging spintronic material that hosts topological antiferromagnetic spin-textures and long magnon-diffusion lengths. We use a low-temperature catalytic-spillover process involving the post-growth incorporation or removal of hydrogen from α-Fe2O3 thin films. Hydrogenation drives pronounced changes in its magnetic anisotropy, Néel vector orientation and canted magnetism via electron injection and local distortions. We explain these effects with a detailed magnetic anisotropy model and first-principles calculations. Tailoring our work for future applications, we demonstrate reversible control of the room-temperature spin-state by doping/expelling hydrogen in Rh-substituted α-Fe2O3.

4.
Sci Rep ; 10(1): 11905, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32681020

ABSTRACT

Silicon, the workhorse of semiconductor industry, is being exploited for various functional applications in numerous fields of nanotechnology. In this paper, we report the fabrication of depth controllable amorphous silicon (a-Si) layers under 80 keV Ar+ ion sputtering at off-normal ion incidences of 30°, 40° and 50° and crystallization of these amorphous Si(111) layers under thermal annealing. We find that the irradiated samples were not fully amorphized even for the lowest oblique incidence of 30°. Sputtering at off-normal incidences induces depth controllable surface amorphization in Si(111). Annealing at temperature of 1,073 K is characterized by formation of depth-varying buried amorphous layer due to defect recrystallization and damage recovery. Some remnant tensile stress has been observed for recrystallized samples even for lowest oblique incidence. The correlation of amorphization and stress due to sputtering induced by oblique incidence has been discussed systematically. The possible mechanism of recrystallization is discussed in terms of vacancies produced in sputtering dominated regime and their migration during annealing treatment. Our results reveal that with appropriate selection of oblique ion beam sputtering parameters, depth controllable surface amorphization and recrystallization may be fine-tuned to achieve co-existing amorphous and crystalline phases, playing a crucial role in fabrication of substrates for IC industry.

5.
Nanotechnology ; 31(28): 285708, 2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32213684

ABSTRACT

Cubic spinel CoCr2O4 has recently attained attention due to its multiferroic properties. However, the Co site substitution effect on the structural and magnetic properties has rarely been studied in thin film form. In this work, the structural and magnetic properties of Co1-x Ni x Cr2O4 (x= 0, 0.5) epitaxial thin films deposited on MgAl2O4 (100) and MgO (100) substrates to manipulate the nature of strain in the films using pulsed laser deposition (PLD) technique are presented. The epitaxial nature of the films was manifested through x-ray diffraction (XRD), reciprocal space mapping (RSM) and Rutherford backscattering spectrometry (RBS) measurements. Raman measurements revealed a disappearance of characteristic A 1 g and F 2 g modes of the CoCr2O4 with increase in the Ni content. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM) studies show a modification of the surface morphology upon Ni substitution. Magnetic measurements disclose that the ferrimagnetic Curie temperature (T C) of the CoCr2O4 in thin film grown on MgAl2O4 (100) and MgO (100) substrates were found to be 100.6 ± 0.5 K and 93.8 ± 0.2 K, respectively. With Ni substitution the T C values were found to be enhanced to 104.5 ± 0.4 K for MgAl2O4 (100) and 108.5 ± 0.6 K for MgO (100) substrates. X-ray photoelectron spectroscopy (XPS) suggests Cr3+ oxidation states in the films, while Co ions are present in a mixed Co2+/Co3+ oxidation state. The substitution of Ni at Co site significantly modifies the line shape of the core level as well as the valence band. Ni ions are also found to be in a mixed 2+/3+ oxidation state. O 1s core level display asymmetry related to possible defects like oxygen vacancies in the films.

6.
Nanotechnology ; 30(38): 385301, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31167177

ABSTRACT

Controlled surface modification and nano-dots structures over Si(111) surfaces have been produced by oblique angle sputter deposition of 80 keV Ar+ beam. Temporal parameters such as self-assemble, tunability of size and density of fabricated nano-dots exhibit distinct fluence dependence. Crystalline to amorphous (c/a) phase transition for sputter deposited Si(111) surfaces has been observed. RBS/C reveals the non-linear response of damage distribution with Ar ion fluence. Compositional alterations like degree of amorphization, damage distribution and depth profiling of Ar in these nano-structured surfaces has been correlated with the morphological and structural findings. The underlying self-organization mechanism relies in ion beam sputtering induced erosion and re-deposition of Si atoms thereby leading to mass transport inside the amorphous layers. Such nano-structured Si(111) surfaces could be applied as key engineering substrates for surface reconstruction, optoelectronic devices, data storage devices, recording media and photovoltaic applications.

7.
Anal Bioanal Chem ; 411(16): 3477-3495, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31093696

ABSTRACT

The detection of computer-generated document forgeries has always been a challenging task for forensic document examiners (FDE). With the aim to support the examination processes, Schottky field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FE-SEM-EDS) is explored as a recent tool to analyze black toners obtained from laser printers and photocopier machines. Forty samples each from the laser printer and photocopier machines are procured and studied for morphological features, elemental profile, and multivariate analysis. The acquired SEM images and spectra are evaluated to discriminate and classify the toners having a different source of origin. Multivariate analysis is applied to develop a model of classification to successfully classify the printed documents on the basis of the similarities and differences in their composition. Hierarchical cluster analysis (HCA) discriminates the printouts in the forms of groups based on their chemical composition. The laser printer and the photocopier printed documents are grouped into 11 and eight clusters, respectively, based on their elemental composition. Cross-validation is further conducted to assess the capabilities of developed principal component analysis (PCA) and linear discriminant analysis (LDA) models for the examination of printouts from unknown origin. Graphical abstract.

SELECTION OF CITATIONS
SEARCH DETAIL
...