Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36678745

ABSTRACT

After the successful commercial exploitation of 3D printing technology, the advanced version of additive manufacturing, i.e., 4D printing, has been a new buzz in the technology-driven industries since 2013. It is a judicious combination of 3D printing technologies and smart materials (stimuli responsive), where time is the fourth dimension. Materials such as liquid crystal elastomer (LCE), shape memory polymers, alloys and composites exhibiting properties such as self-assembling and self-healing are used in the development/manufacturing of these products, which respond to external stimuli such as solvent, temperature, light, etc. The technologies being used are direct ink writing (DIW), fused filament fabrication (FFF), etc. It offers several advantages over 3D printing and has been exploited in different sectors such as healthcare, textiles, etc. Some remarkable applications of 4D printing technology in healthcare are self-adjusting stents, artificial muscle and drug delivery applications. Potential of applications call for further research into more responsive materials and technologies in this field. The given review is an attempt to collate all the information pertaining to techniques employed, raw materials, applications, clinical trials, recent patents and publications specific to healthcare products. The technology has also been evaluated in terms of regulatory perspectives. The data garnered is expected to make a strong contribution to the field of technology for human welfare and healthcare.

2.
Antonie Van Leeuwenhoek ; 114(12): 2147-2162, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34643814

ABSTRACT

A Gram-negative, aerobic, non-motile, oxidase-positive, catalase-positive, rod-shaped bacterium, designated strain MCCB 386T was isolated from sediment samples collected from Kongsfjorden, an Arctic fjord. The strain MCCB 386T showed growth at 4-37 °C (optimum 27°C) in the presence of 1-8% NaCl (w/v, optimum 3.5%) and at pH 6.0-8.0 (optimum pH 7.0). The major fatty acids were C18:1ω7c (54.0%) and 11-methyl C18:1ω7c (22.6%). The dominant respiratory quinone was Q-10. The major polar lipids comprised of phosphatidylcholine (PC), diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphoglycolipid (PGL), one unidentified aminolipid, two glycolipids and two unidentified lipids. The genomic G+C content of the strain MCCB 386T was 68.1 mol%. The 16 S rRNA gene sequences based phylogenetic analysis of MCCB 386T showed that Psychromarinibacter halotolerans YBW34T (95.88%) is the most closely related species. In addition, overall genome relatedness indices (OGRI) of MCCB 386T with closely related strains were lower than threshold level for species and genus delineation. The analysis of Biosynthetic Gene clusters (BGCs) revealed the potential of this strain for production of novel bioactive secondary metabolites. As per polyphasic taxonomic characterisation, strain MCCB 386T represents a novel species of a novel genus for which the name Roseitranquillus sediminis gen. nov., sp. nov. is suggested. The type strain of the species is MCCB 386T (= JCM 33,538T= KACC 21,531T).


Subject(s)
Estuaries , Rhodobacteraceae , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids , Phospholipids , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/genetics , Seawater , Sequence Analysis, DNA , Ubiquinone
3.
Antonie Van Leeuwenhoek ; 114(1): 23-35, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33230720

ABSTRACT

Herein we report the isolation of a novel actinomycete, strain MCCB 268T, from the sediment sample collected from a high Arctic fjord Kongsfjorden. MCCB 268T showed greater than 97% 16S rRNA gene sequence similarity with those of Pseudonocardia konjuensis LM 157T (98.06%), Pseudonocardia soli NW8-21 (97.22%) Pseudonocardia endophytica YIM 56035 (97.08%) and Pseudonocardia nantongensis KLBMP 1282 (97.34%) showing that the strain should be assigned to the genus Pseudonocardia. DNA-DNA hybridization with Pseudonocardia konjuensis LM 157T showed only 41.5% relatedness to strain MCCB 268T. The whole genome of the strain MCCB 268T was sequenced. Whole-genome average nucleotide identity, dDDH (%) and genome tree analysis demonstrated that strain significantly differed from other Pseudonocardia species. The G + C content was 70.5 mol%. MCCB 268T exhibited in vitro cytotoxicity and through bioassay guided fractionation followed by HPLC separation a cytotoxic compound (I) was isolated. The compound (I) was identified as 1-acetyl-ß-carboline through NMR spectra and high-resolution mass spectrometry. Compound (I) showed cytotoxicity against lung cancer cell line and mode of anticancer activity was found to be through the induction of apoptosis. Based on the genotypic and phenotypic features, MCCB 268T ought to be classified as a novel species under the genus Pseudonocardia for which the name Pseudonocardia cytotoxica sp. nov. is proposed (= CCUG72333T = JCM32718T).


Subject(s)
Actinobacteria , Actinobacteria/genetics , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Estuaries , Fatty Acids/analysis , Nucleic Acid Hybridization , Phylogeny , Pseudonocardia , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...