Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Tech (Berl) ; 67(6): 513-524, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36165698

ABSTRACT

Tuberculosis caused by Mycobacterium tuberculosis have been a major challenge for medical and healthcare sectors in many underdeveloped countries with limited diagnosis tools. Tuberculosis can be detected from microscopic slides and chest X-ray but as a result of the high cases of tuberculosis, this method can be tedious for both microbiologist and Radiologist and can lead to miss-diagnosis. The main objective of this study is to addressed these challenges by employing Computer Aided Detection (CAD) using Artificial Intelligence-driven models which learn features based on convolution and result in an output with high accuracy. In this paper, we described automated discrimination of X-ray and microscopic slide images of tuberculosis into positive and negative cases using pretrained AlexNet Models. The study employed Chest X-ray dataset made available on Kaggle repository and microscopic slide images from both Near East university hospital and Kaggle repository. For classification of tuberculosis and healthy microscopic slide using AlexNet+Softmax, the model achieved accuracy of 98.14%. For classification of tuberculosis and healthy microscopic slide using AlexNet+SVM, the model achieved 98.73% accuracy. For classification of tuberculosis and healthy chest X-ray images using AlexNet+Softmax, the model achieved accuracy of 98.19%. For classification of tuberculosis and healthy chest X-ray images using AlexNet+SVM, the model achieved 98.38% accuracy. The result obtained has shown to outperformed several studies in the current literature. Future studies will attempt to integrate Internet of Medical Things (IoMT) for the design of IoMT/AI-enabled platform for detection of Tuberculosis from both X-ray and Microscopic slide images.


Subject(s)
Deep Learning , Tuberculosis , Humans , Artificial Intelligence , Neural Networks, Computer , Tuberculosis/diagnosis , Computers
2.
Expert Syst ; : e12705, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-34177037

ABSTRACT

Reverse-Transcription Polymerase Chain Reaction (RT-PCR) method is currently the gold standard method for detection of viral strains in human samples, but this technique is very expensive, take time and often leads to misdiagnosis. The recent outbreak of COVID-19 has led scientists to explore other options such as the use of artificial intelligence driven tools as an alternative or a confirmatory approach for detection of viral pneumonia. In this paper, we utilized a Convolutional Neural Network (CNN) approach to detect viral pneumonia in x-ray images using a pretrained AlexNet model thereby adopting a transfer learning approach. The dataset used for the study was obtained in the form of optical Coherence Tomography and chest X-ray images made available by Kermany et al. (2018, https://doi.org/10.17632/rscbjbr9sj.3) with a total number of 5853 pneumonia (positive) and normal (negative) images. To evaluate the average efficiency of the model, the dataset was split into on 50:50, 60:40, 70:30, 80:20 and 90:10 for training and testing respectively. To evaluate the performance of the model, 10 K Cross-validation was carried out. The performance of the model using overall dataset was compared with the means of cross-validation and the currents state of arts. The classification model has shown high performance in terms of accuracy, sensitivity and specificity. 70:30 split performed better compare to other splits with accuracy of 98.73%, sensitivity of 98.59% and specificity of 99.84%.

SELECTION OF CITATIONS
SEARCH DETAIL
...