Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; : 1-18, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623998

ABSTRACT

Malachite green (MG) dye and cadmium metal ion are toxic pollutants that should be removed from aqueous environment. The recent study aimed to examine the adsorption behavior of MG dye and Cd (II) from wastewater onto low-cost adsorbent prepared by activating corn silk with nitric acid (ACS) and characterized by SEM, FTIR, XRD, BET and TGA. The optimum MG and Cd (II) adsorption was observed at pH 7 and pH 9 and maximum uptake of both pollutants was at 0.5 g dosage, 60 mins contact time and 20 mg/L initial concentration. The retention of dye and metal ion by the studied adsorbent was best fit to Langmuir isotherm and Pseudo-second order kinetics. The maximum monolayer coverage capacity of ACS for MG dye and Cd (II) ion was 18.38 mg/g and 25.53 mg/g, respectively. Thermodynamic studies predicted a spontaneous reaction with exothermic process for MG dye whereas an endothermic and spontaneous process was confirmed for Cd ion based on estimated parameters. The adsorption mechanism of MG dye and Cd (II) uptake was by combination of electrostatic interaction, pore diffusion, ion exchange, pie-pie attraction, hydrogen bonding, and complexation. The adsorbed pollutants were effectively desorbed with significant regeneration efficiency after successive five cycles that proved the potential of low-cost biosorbent for selective sequestration of cationic dye and divalent metal ion from effluents.


The use of nitric acid-modified corn silk has been reported to enhance its adsorption performance over the unmodified cob for pollutants such as cadmium ions and malachite green. Although there may be no recorded data on the adsorption efficiency of acid-treated corn silk for selected pollutants, it can be considered as a prospective bio-sorbent owing to its chemical composition and functional groups for exchange of hydrogen ions for other cations.

2.
Heliyon ; 10(1): e23158, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163109

ABSTRACT

Sugar dust poses significant risks in the sugar industry, threatening workers' safety and health as well as the potential for explosions and fires. The combustibility of sugar dust arises from its small, lightweight particles that disperse easily and ignite readily. Effective management strategies are essential to ensuring a safe work environment and preventing accidents. This perspective article provides an overview of sugar dust management in the global sugar industry. Various methods are employed to collect and manage sugar dust, including dust collectors, air handling systems, and proper housekeeping procedures. Advancements like electrostatic precipitators, high-efficiency particulate air filters, and self-cleaning dust collection systems show promise for future management. Utilizing both artificial intelligence and nanotechnology can also contribute to minimizing the concentrations of sugar dust in facilities. Stringent regulations and guidelines exist to control dust explosions in the industry. Implementation of robust safety measures and training programs significantly curbs the economic and environmental toll of sugar dust explosions. The paper concludes with recommendations to address sugar dust challenges, including enhanced regulation, investment in technology and research, and improved collaboration among industry stakeholders. These measures will mitigate hazards, ensure worker well-being, and safeguard the sugar industry's operations.

SELECTION OF CITATIONS
SEARCH DETAIL
...