Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2401350, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884251

ABSTRACT

A supercritical carbon dioxide (SCCO2) fluid, characterized by gas-like diffusivity, near-zero surface tension, and excellent mass transfer properties, is used as a precursor to produce silicon oxycarbide (SiOC) coating. SCCO2 disperses and reacts with Si particles to form an interfacial layer consisting of Si, O, and C. After an 850 °C annealing process, a conformal SiOC coating layer forms, resulting in core-shell Si@SiOC particles. High-resolution transmission electron microscopy and its X-ray line-scan spectroscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy, are used to examine the SiOC formation mechanism. Effects of SCCO2 interaction time on the SiOC properties are investigated. The SiOC layer connects the Si@SiOC particles, improving electron and Li+ transport. Cyclic voltammetry, galvanostatic intermittent titration technique, and electrochemical impedance spectroscopy are employed to examine the role of SiOC during charging/discharging. Operando X-ray diffraction data reveal that the SiOC coating reduces crystal size of the formed Li15Si4 and increases its formation/elimination reversibility during cycling. The Si@SiOC electrode shows a capacitiy of 2250 mAh g-1 at 0.2 A g-1. After 500 cycles, the capacity retention is 72% with Coulombic efficiency above 99.8%. A full cell consisting of Si@SiOC anode and LiNi0.8Co0.1Mn0.1O2 cathode is constructed, and its performance is evaluated.

2.
Adv Sci (Weinh) ; 11(25): e2310062, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38654688

ABSTRACT

To enhance Li storage properties, nitrogenation methods are developed for Si anodes. First, melamine, urea, and nitric oxide (NO) precursors are used to nitrogenize carbon-coated Si particles. The properties of the obtained particles are compared. It is found that the NO process can maximize the graphitic nitrogen (N) content and electronic conductivity of a sample. In addition, optimized N functional groups and O─C species on the electrode surface increase electrolyte wettability. However, with a carbon barrier layer, NO hardly nitrogenizes the Si cores. Therefore, bare Si particles are reacted with NO. Core-shell Si@amorphous SiNx particles are produced using a facile and scalable NO treatment route. The effects of the NO reaction time on the physicochemical properties and charge-discharge performance of the obtained materials are systematically examined. Finally, the Si@SiNx particles are coated with N-doped carbon. Superior capacities of 2435 and 1280 mAh g-1 are achieved at 0.2 and 5 A g-1, respectively. After 300 cycles, 90% of the initial capacity is retained. In addition, differential scanning calorimetry data indicate that the multiple nitrogenation layers formed by NO significantly suppress electrode exothermic reactions during thermal runaway.

3.
Adv Sci (Weinh) ; 10(21): e2301218, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37166034

ABSTRACT

The lithiation/delithiation properties of α-Si3 N4 and ß-Si3 N4 are compared and the carbon coating effects are examined. Then, ß-Si3 N4 at various fractions is used as the secondary phase in a Si anode to modify the electrode properties. The incorporated ß-Si3 N4 decreases the crystal size of Si and introduces a new NSiO species at the ß-Si3 N4 /Si interface. The nitrogen from the milled ß-Si3 N4 diffuses into the surface carbon coating during the carbonization heat treatment, forming pyrrolic nitrogen and CNO species. The synergistic effects of combining ß-Si3 N4 and Si phases on the specific capacity are confirmed. The operando X-ray diffraction and X-ray photoelectron spectroscopy data indicate that ß-Si3 N4 is partially consumed during lithiation to form a favorable Li3 N species at the electrode. However, the crystalline structure of the hexagonal ß-Si3 N4 is preserved after prolonged cycling, which prevents electrode agglomeration and performance deterioration. The carbon-coated ß-Si3 N4 /Si composite anode shows specific capacities of 1068 and 480 mAh g-1 at 0.2 and 5 A g-1 , respectively. A full cell consisting of the carbon-coated ß-Si3 N4 /Si anode and a LiNi0.8 Co0.1 Mn0.1 O2 cathode is constructed and its properties are evaluated. The potential of the proposed composite anodes for Li-ion battery applications is demonstrated.

4.
Nanoscale ; 12(17): 9616-9627, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32315010

ABSTRACT

Encapsulating silicon (Si) nanoparticles with graphene nanosheets in a microspherical structure is proposed to increase electrical conductivity and solve stability issues when using Si as an anode material in lithium-ion batteries (LIBs). Currently the main strategies to produce high-quality Si-graphene (Si@Gra) electrodes are (1) chemical vapor deposition (CVD) of graphene grown in situ on Si by hydrocarbon precursors and (2) encapsulating Si with a graphene oxide followed by postannealing. However, both methods require a high-temperature and are costly and time-consuming procedures, which hinders their mass scalability and practical utilization. Herein, we report a Si@Gra composite with a ball-like structure that is assembled by a facile spray drying process without a postannealing treatment. The graphene sheets are synthesized by an electrochemical exfoliation method from natural graphite. The resulting Si@Gra composite exhibits a unique core-shell structure, from which the ball-like morphology and the number of graphene layers in the Si@Gra composites are found to affect both the electric conductivity and ionic conductivity. The Si@Gra composites are found to increase the capacity of the anode and provide excellent cycling stability, which is attributed to the high electrical conductivity and mechanical flexibility of the layered graphene; additionally, a void space in the core-shelled ball structure inside the Si@Gra compensates for the Si volume expansion. As a result, the Si@few-layer graphene ball anode exhibits a high initial discharge capacity of 2882.3 mA h g-1 and a high initial coulombic efficiency of 86.9% at 0.2 A g-1. The combination of few-layer graphene sheets and the spray drying process can effectively be applied for large-scale production of core-shell structured Si@Gra composites as promising anode materials for use in high-performance LIBs.

5.
ACS Appl Mater Interfaces ; 11(45): 42049-42056, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31633334

ABSTRACT

Electrolyte is a key component in high-voltage lithium-ion batteries (LIBs). Bis(trifluoromethanesulfonyl)imide-based ionic liquid (IL)/organic carbonate hybrid electrolytes have been a research focus owing to their excellent balance of safety and ionic conductivity. Nevertheless, corrosion of Al current collectors at high potentials usually happens for this kind of electrolyte. In this study, this long-standing problem is solved via the modulation of the IL/carbonate ratio and LiPF6 concentration in the hybrid electrolyte. The proposed electrolyte suppresses Al dissolution and electrolyte oxidation at 5 V (vs Li+/Li) and thus allows for ideal lithiation/delithiation performance of a high-voltage LiNi0.5Mn1.5O4 (LNMO) cathode even at 55 °C. The underlying mechanism is examined in this work. Excellent cycling stability (97% capacity retention) for an LNMO cathode after 300 cycles is achieved. This electrolyte shows good wettability toward a polyethylene separator and low flammability. In addition, satisfactory compatibility with both graphite and Si-based anodes is confirmed. The proposed electrolyte design strategies have great potential for applications in high-voltage LIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...