Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Radiat Isot ; 103: 100-1, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26073268

ABSTRACT

In this paper, we report the effective atomic number of some H, C, N and O based sugars and amino acids. These have been determined by using a handy expression which is based on the theoretical angle integrated small angle (coherent+incoherent) scattering cross sections of seven elements of Z≤13 in four angular ranges of (0-4°), (0-6°), (0-8°) and (0-10°)for (241)Am (59.54 keV) and (137)Cs (661.6 keV) gamma rays. The theoretical scattering cross sections were computed by a suitable numerical integration of the atomic form factor and incoherent scattering function compilations of Hubbell et al. (1975) which make use of the non-relativistic Hartree-Fock (NRHF) model for the atomic charge distribution of the elements in the angular ranges of interest. The angle integrated small angle scattering cross sections of the H, C, N and O based sugars and amino acids measured by a new method reported recently by the authors were used in the handy expression to derive their effective atomic number. The results are compared with the other available data and discussed. Possible conclusions are drawn based on the present study.


Subject(s)
Americium/chemistry , Amino Acids/chemistry , Carbohydrates/chemistry , Cesium/chemistry , Gamma Rays , Models, Chemical , Algorithms , Amino Acids/radiation effects , Carbohydrates/radiation effects , Computer Simulation , Linear Energy Transfer , Protons , Radiation Dosage , Scattering, Radiation
2.
Appl Radiat Isot ; 68(12): 2443-7, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20702099

ABSTRACT

In this paper, we report the effective atomic number, Z(eff), of composite materials for Compton effect in the gamma ray region 280-1115 keV based on the theoretically obtained Klein-Nishina scattering cross sections in the angular range 50-100° as well as experimentally measured differential incoherent (Compton) scattering cross sections of some composite materials at three scattering angles of 60°, 80°, and 100°. The Z(eff) values so obtained were found to be both angle and energy independent in the region of interest so that it could be concluded that it is possible to represent such composite materials by a mean atomic number in this region as suggested in earlier reports recently.

SELECTION OF CITATIONS
SEARCH DETAIL