Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lung Cancer ; 135: 217-227, 2019 09.
Article in English | MEDLINE | ID: mdl-31446998

ABSTRACT

OBJECTIVES: The majority of patients with non-small cell lung cancer (NSCLC) present with advanced stage disease, at which time chemotherapy is usually the most common treatment option. While somewhat effective, patients treated with platinum-based regimens will eventually develop resistance, with others presenting with intrinsic resistance. Multiple pathways have been implicated in chemo-resistance, however the critical underlying mechanisms have yet to be elucidated. The aim of this project was to determine the role of inflammatory mediators in cisplatin-resistance in NSCLC. MATERIALS AND METHODS: Inflammatory mediator, NF-κB, and its associated pathways were investigated in an isogenic model of cisplatin-resistant NSCLC using age-matched parental (PT) and corresponding cisplatin-resistant (CisR) sublines. Pathways were assessed using mass spectrometry, western blot analysis and qRT-PCR. The cisplatin sensitizing potential of an NF-κB small molecule inhibitor, DHMEQ, was also assessed by means of viability assays and western blot analysis. RESULTS: Proteomic analysis identified dysregulated NF-κB responsive targets in CisR cells when compared to PT cells, with increased NF-κB expression identified in four out of the five NSCLC sub-types examined (CisR versus PT). DHMEQ treatment resulted in reduced NF-κB expression in the presence of cisplatin, and re-sensitized CisR cells to the cytotoxic effects of the drug. CONCLUSION: This study identified NF-ĸB as a potential therapeutic target in cisplatin-resistant NSCLC. Furthermore, inhibition of NF-ĸB using DHMEQ re-sensitized chemo-resistant cells to cisplatin treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Lung Neoplasms/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/therapeutic use , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Protein Interaction Mapping , Protein Interaction Maps , Proteomics/methods
2.
PLoS One ; 10(7): e0132496, 2015.
Article in English | MEDLINE | ID: mdl-26192925

ABSTRACT

Several studies highlight the role of inflammatory markers in thrombosis as well as in cancer. However, their combined role in cancer-associated deep vein thrombosis (DVT) and the molecular mechanisms, involved in its pathophysiology, needs further investigations. In the present study, C-reactive protein, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1ß), matrix metalloproteases-9 (MMP-9), vascular endothelial growth factor (VEGF), tissue factor (TF), fibrinogen and soluble P-selectin, were analyzed in plasma and in monocyte samples from 385 cancer patients, of whom 64 were concomitantly affected by DVT (+). All these markers were higher in cancer patients DVT+ than in those DVT-. Accordingly, significantly higher NF-kB activity was observed in cancer patients DVT+ than DVT-. Significant correlation between data obtained in plasma and monocyte samples was observed. NF-kB inhibition was associated with decreased levels of all molecules in both cancer DVT+ and DVT-. To further demonstrate the involvement of NF-kB activation by the above mentioned molecules, we treated monocyte derived from healthy donors with a pool of sera from cancer patients with and without DVT. These set of experiments further suggest the significant role played by some molecules, regulated by NF-kB, and detected in cancer patients with DVT. Our data support the notion that NF-kB may be considered as a therapeutic target for cancer patients, especially those complicated by DVT. Treatment with NF-kB inhibitors may represent a possible strategy to prevent or reduce the risk of DVT in cancer patients.


Subject(s)
NF-kappa B/metabolism , Neoplasms/metabolism , Venous Thrombosis/metabolism , Aged , Biomarkers/blood , C-Reactive Protein/metabolism , Female , Fibrinogen/metabolism , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Middle Aged , Monocytes/metabolism , Neoplasms/complications , Smoking , Thromboplastin/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A , Venous Thrombosis/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...