Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Oleo Sci ; 62(6): 353-62, 2013.
Article in English | MEDLINE | ID: mdl-23728326

ABSTRACT

A sugar-based gemini surfactant N,N'-dialkyl-N,N'-dilactobionamideethylenediamine (2C(n)Lac, where n represents alkyl chain lengths of 8, 10, 12, and 14) was synthesized by reacting N,N'-dialkylethylenediamine with lactobionic acid. The adsorption properties of 2C(n)Lac were characterized by equilibrium and dynamic surface tension measurements. Their micellization properties were investigated by steady-state fluorescence using pyrene as a probe and dynamic light scattering (DLS) techniques. The dependence of these properties on the alkyl chain length and the number of sugars was determined through a comparison with the corresponding monomeric surfactants C(n)MLA and previously reported sugar-based gemini surfactants containing monosaccharide gluconamide or disaccharide lactobionamide groups with a hexanediamide spacer. The critical micelle concentration (cmc) and surface tension of 2C(n)Lac are both lower than those of C(n)MLA surfactants. These lower values indicate that the synthesized sugar-based gemini surfactants have excellent micelle-forming ability in solution and high adsorption ability at the air-water interface, which result from strong interactions of the hydrogen bonds between the hydroxyls in lactobionamide groups. When the alkyl chain length of 2C(n)Lac increases to 14, premicellar formation occurs in the solution along with adsorption at the air-water interface at concentrations below the cmc. Furthermore, 2C(n)Lac forms micelles measuring 4 to 12 nm in solution, with no dependence on the alkyl chain length, and their size slightly increases with increasing concentration.


Subject(s)
Disaccharides , Ethylenediamines/chemistry , Ethylenediamines/chemical synthesis , Micelles , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Surface-Active Agents , Adsorption , Hydrogen Bonding , Solutions , Surface Tension , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry
2.
J Colloid Interface Sci ; 318(2): 440-8, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18031755

ABSTRACT

The adsorption and micellization behavior of novel sugar-based gemini surfactants (N,N(')-dialkyl-N,N(')-digluconamide ethylenediamine, Glu(n)-2-Glu(n), where n is the hydrocarbon chain length of 8, 10 and 12) has been studied on the basis of static/dynamic surface tension, fluorescence, dynamic light scattering (DLS) and cryogenic transmission electron microscope (cryo-TEM) data. The static surface tension of the aqueous Glu(n)-2-Glu(n) solutions measured at the critical micelle concentration (cmc) is observed to be significantly lower than that of the corresponding monomeric surfactants. This suggests that the gemini surfactants, newly synthesized in the current study, are able to form a closely packed monolayer film at the air/aqueous solution interface. The greater ability in the molecular association is supported by the remarkably (approximately 100-200 times) lower cmc of the gemini surfactants compared with the corresponding monomeric ones. With a combination of the fluorescence and DLS data, a structural transformation of the Glu(n)-2-Glu(n) micelles is suggested to occur with an increase in the concentration. The cryo-TEM measurements clearly confirm the formation of worm-like micelles of Glu(12)-2-Glu(12) at the concentration well above the cmc.


Subject(s)
Calcitriol/analogs & derivatives , Gluconates/chemistry , Micelles , Surface-Active Agents/chemistry , Adsorption , Air , Calcitriol/chemistry , Cryoelectron Microscopy , Fluorescence , Molecular Structure , Particle Size , Scattering, Radiation , Solutions/chemistry , Surface Tension , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...