Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(8): 8045-8051, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36872969

ABSTRACT

Lithium iron phosphate (LiFePO4, LFP) is one of the most advanced commercial cathode materials for Li-ion batteries and is widely applied as battery cells for electric vehicles. In this work, a thin and uniform LFP cathode film on a conductive carbon-coated aluminum foil was besieged by the electrophoretic deposition (EPD) technique. Along with the LFP deposition conditions, the impact of two types of binders, poly(vinylidene fluoride) (PVdF) and poly(vinylpyrrolidone) (PVP), on the film quality and electrochemical results has been studied. The results revealed that the LFP_PVP composite cathode had a highly stable electrochemical performance compared with the LFP_PVdF counterpart due to the negligible influence of the PVP on the pore volume and size and retaining high surface area of LFP. The LFP_PVP composite cathode film unveiled a high discharge capacity of 145 mAh g-1 at 0.1C and performed over 100 cycles with capacity retention and Coulombic efficiency of 95 and 99%, respectively. The C-rate capability test also revealed a more stable performance of LFP_PVP compared to LFP_PVdF.

2.
Nanomaterials (Basel) ; 10(10)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050363

ABSTRACT

Low dimensional Si-based materials are very promising anode candidates for the next-generation lithium-ion batteries. However, to satisfy the ever-increasing demand in more powerful energy storage devices, electrodes based on Si materials should display high-power accompanied with low volume change upon operation. Thus far, there were no reports on the Si-based materials which satisfy the stated requirements. Hence, here, we report on modified onion-structured Si nanoparticles (SiNPs) co-coated with Li4Ti5O12 (LTO) and cyclized polyacrylonitrile (cPAN) to bring the synergistic effect enhancing the conductivity, tolerance to volume change and stable performance. Obtained results suggest that the nanoparticles were conformally coated with both materials simultaneously and the thicknesses of the films were in a range of a few nanometers. Electrochemical tests show that the modified SiNPs deliver a high initial capacity of 2443 mAh g-1 and stable capacity retention over 50 cycles with 95% Coulombic efficiency.

3.
ACS Appl Mater Interfaces ; 12(15): 17406-17414, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32108469

ABSTRACT

Silicon fascinates with incredibly high theoretical energy density as an anode material and considered as a primary candidate to replace well-established graphite. However, further commercialization is hindered by the abnormal volume changes of Si in every single cycle. Silicon embedded in a buffer matrix using the melt-spinning process is a promising approach; however, its metastable nature significantly reduces the microstructure homogeneity, the quality of the composition, and, therefore, the electrochemical performances. Herein, we developed a new approach to design a high-performance Si-alloy with improved microstructure uniformity and electrochemical properties. Namely, annealing at a certain temperature of the melt-spun amorphous alloy ribbon allowed us to evenly distribute Si nanocrystallites in the microstructure with control of average grain size. As a result, the Si-alloy electrode delivers an initial discharge capacity of 900 mAh g-1 and exhibits a high coulombic efficiency of >99% from the second cycle with a capacity retention of ∼98% after 100 cycles. This study provides powerful insights and evidence for the successful application of the proposed approach for commercial purposes.

4.
Front Chem ; 7: 389, 2019.
Article in English | MEDLINE | ID: mdl-31214572

ABSTRACT

The electrochemical performances of lithium-ion batteries with different lattice-spacing Si negative electrodes were investigated. To achieve a homogeneous distribution of impurities in the Si anodes, single crystalline Si wafers with As-dopant were ball-milled to form irregular and agglomerated micro-flakes with an average size of ~10 µm. The structural analysis proved that the As-doped Si negative materials retain the increased lattice constant, thus, keep the existence of the residual tensile stress of around 1.7 GPa compared with undoped Si anode. Electrochemical characterization showed that the As-doped Si anodes have lower discharge capacity, but Coulombic efficiency and capacity retention were improved in contrast with those of the undoped one. This improvement of electrochemical characteristics was attributed to the increased potential barrier on the side of Si anodes, inherited from the electronic and mechanical nature of Si materials doped with As. We believe that this study will guide us the way to optimize the electrochemical performances of LIBs with Si-based anodes.

5.
Inorg Chem ; 56(22): 13815-13821, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29083913

ABSTRACT

The layered lithium nitridonickelate Li2.0(1)Ni0.67(2)N has been investigated as a negative electrode in the 0.02-1.25 V vs Li+/Li potential window. Its structural and electrochemical properties are reported. Operando XRD experiments upon three successive cycles clearly demonstrate a single-phase behavior in line with the discharge-charge profiles. The reversible breathing of the hexagonal structure, implying a supercell, is fully explained. The Ni2+/Ni+ redox couple is involved, and the electron transfer is combined with the reversible accommodation of Li+ ions in the cationic vacancies. The structural response is fully reversible and minimal, with a maximum volume variation of 2%. As a consequence, a high capacity of 200 mAh g-1 at C/10 is obtained with an excellent capacity retention, close to 100% even after 100 cycles, which makes Li2.0(1)Ni0.67(2)N a promising negative electrode material for Li-ion batteries.

6.
Nanoscale Res Lett ; 10(1): 450, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26586150

ABSTRACT

A free-standing sulfur/nitrogen-doped carbon nanotube (S/N-CNT) composite prepared via a simple solution method was first studied as a cathode material for lithium/sulfur batteries. By taking advantage of the self-weaving behavior of N-CNT, binders and current collectors are rendered unnecessary in the cathode, thereby simplifying its manufacturing and increasing the sulfur weight ratio in the electrode. Transmission electronic microscopy showed the formation of a highly developed core-shell tubular structure consisting of S/N-CNT composite with uniform sulfur coating on the surface of N-CNT. As a core in the composite, the N-CNT with N functionalization provides a highly conductive and mechanically flexible framework, enhancing the electronic conductivity and consequently the rate capability of the material.

SELECTION OF CITATIONS
SEARCH DETAIL
...