Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 47(4): 405-411, 2019 04.
Article in English | MEDLINE | ID: mdl-30683809

ABSTRACT

Understanding the quantitative implications of P-glycoprotein and breast cancer resistance protein efflux is a key hurdle in the design of effective, centrally acting or centrally restricted therapeutics. Previously, a comprehensive physiologically based pharmacokinetic model was developed to describe the in vivo unbound brain-to-plasma concentration ratio as a function of efflux activity measured in vitro. In the present work, the predictive utility of this framework was examined through application to in vitro and in vivo data generated on 133 unique compounds across three preclinical species. Two approaches were examined for the scaling of efflux activity to in vivo, namely relative expression as determined by independent proteomics measurements and relative activity as determined via fitting the in vivo neuropharmacokinetic data. The results with both approaches indicate that in vitro efflux data can be used to accurately predict the degree of brain penetration across species within the context of the proposed physiologically based pharmacokinetic framework.


Subject(s)
Biological Transport/physiology , Blood-Brain Barrier/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Brain/metabolism , Cell Line , Dogs , Madin Darby Canine Kidney Cells , Rats , Rats, Sprague-Dawley
2.
J Pharm Sci ; 101(3): 1327-35, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22161810

ABSTRACT

Historically, recovery had been used to evaluate the data quality of plasma protein binding or tissue binding obtained from equilibrium dialysis assays. Low recovery was often indicative of high nonspecific binding, instability, or low solubility. This study showed that, when equilibrium was fully established in the dialysis assay, low recovery due to nonspecific binding had no impact on the determination of fraction unbound. The conclusion was supported by the principles of the equilibrium dialysis assay, experimental data, and mathematic simulations. The results suggested that the use of recovery as an acceptance criterion for the equilibrium dialysis assay in drug discovery was too restrictive, and introduced the additional burden of repeating studies unnecessarily.


Subject(s)
Blood Proteins/metabolism , Brain/metabolism , Dialysis/methods , Pharmaceutical Preparations/metabolism , Animals , Computer Simulation , Drug Discovery , Humans , Models, Biological , Protein Binding , Rats , Rats, Wistar
3.
J Pharm Sci ; 100(11): 4974-85, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21766308

ABSTRACT

Permeability is an important property of drug candidates. The Madin-Darby canine kidney cell line (MDCK) permeability assay is widely used and the primary concern of using MDCK cells is the presence of endogenous transporters of nonhuman origin. The canine P-glycoprotein (Pgp) can interfere with permeability and transporter studies, leading to less reliable data. A new cell line, MDCKII-LE (low efflux), has been developed by selecting a subpopulation of low-efflux cells from MDCKII-WT using an iterative fluorescence-activated cell sorting technique with calcein-AM as a Pgp and efflux substrate. MDCKII-LE cells are a subpopulation of MDCKII cells with over 200-fold lower canine Pgp mRNA level and fivefold lower protein level than MDCKII-WT. MDCKII-LE cells showed less functional efflux activity than MDCKII-WT based on efflux ratios. Notably, MDCKII-MDR1 showed about 1.5-fold decreased expression of endogenous canine Pgp, suggesting that using the net flux ratio might not completely cancel out the background endogenous transporter activities. MDCKII-LE cells offer clear advantages over the MDCKII-WT by providing less efflux transporter background signals and minimizing interference from canine Pgp. The MDCKII-LE apparent permeability values well differentiates compounds from high to medium/low human intestinal absorption and can be used for Biopharmaceutical Classification System. The MDCKII-LE permeability assay (4-in-1 cassette dosing) is high throughput with good precision, reproducibility, robustness, and cost-effective.


Subject(s)
Permeability , ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Animals , Cell Line , Cell Separation , Chromatography, Liquid , Dogs , Flow Cytometry , Humans , Intestinal Absorption , Real-Time Polymerase Chain Reaction , Tandem Mass Spectrometry
4.
Drug Metab Dispos ; 39(7): 1270-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21474681

ABSTRACT

Species independence of brain tissue binding was assessed with a large number of structurally diverse compounds using equilibrium dialysis with brain homogenates of seven species and strains (Wistar Han rat, Sprague-Dawley rat, CD-1 mouse, Hartley guinea pig, beagle dog, cynomolgus monkey, and human). The results showed that the fractions unbound of the seven species and strains were strongly correlated with correlation coefficients ranging from 0.93 to 0.99. The cross-species/strain correlations were not significantly different from the interassay correlation with the same species. The linear correlation between Wistar Han and other species had a slope close to 1 and an intercept near 0. Based on orthogonal statistical analysis, no correction is needed for extrapolation of fraction unbound from Wistar Han rat to the other species or strains. Hence, brain tissue binding of Wistar Han rat can be used to obtain binding of other species and strains in drug discovery.


Subject(s)
Brain/metabolism , Animals , Dogs , Guinea Pigs , Humans , Macaca fascicularis , Mice , Rats , Species Specificity
5.
ACS Med Chem Lett ; 1(2): 50-3, 2010 May 13.
Article in English | MEDLINE | ID: mdl-24900175

ABSTRACT

Apparent intrinsic clearance (CLia) determined from microsomal stability assays is a cornerstone in drug discovery. Categorical bins are routinely applied to this end point to facilitate analysis. However, such bins ignore the interdependent nature of apparent intrinsic microsome clearance on several ADME parameters. Considering CLia as a determinant for both metabolic stability and potential dose is more appropriate. In this context with proper accounting for nonspecific binding to microsomes and plasma, consideration of compounds with higher CLia may be warranted. The underlying benefit is the potential increase in the number of hits or chemical diversity for evaluation during the early stages of programs.

7.
Proc Natl Acad Sci U S A ; 100(15): 9044-9, 2003 Jul 22.
Article in English | MEDLINE | ID: mdl-12835414

ABSTRACT

Prostaglandin (PG)E2 is a potent mediator of pain and inflammation, and high levels of this lipid mediator are observed in numerous disease states. The inhibition of PGE2 production to control pain and to treat diseases such as rheumatoid arthritis to date has depended on nonsteroidal antiinflammatory agents such as aspirin. However, these agents inhibit the synthesis of all prostanoids. To produce biologically active PGE2, PGE synthases catalyze the isomerization of PGH2 into PGE2. Recently, several PGE synthases have been identified and cloned, but their role in inflammation is not clear. To study the physiological role of the individual PGE synthases, we have generated by targeted homologous recombination a mouse line deficient in microsomal PGE synthase 1 (mPGES1) on the inbred DBA/1lacJ background. mPGES1-deficient (mPGES1-/-) mice are viable and fertile and develop normally compared with wild-type controls. However, mPGES1-/- mice displayed a marked reduction in inflammatory responses compared with mPGES1+/+ mice in multiple assays. Here, we identify mPGES1 as the PGE synthase that contributes to the pathogenesis of collagen-induced arthritis, a disease model of human rheumatoid arthritis. We also show that mPGES1 is responsible for the production of PGE2 that mediates acute pain during an inflammatory response. These findings suggest that mPGES1 provides a target for the treatment of inflammatory diseases and pain associated with inflammatory states.


Subject(s)
Inflammation/physiopathology , Intramolecular Oxidoreductases/deficiency , Pain/physiopathology , Animals , Arthritis, Experimental/etiology , Arthritis, Experimental/pathology , Arthritis, Experimental/physiopathology , Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/physiopathology , Dinoprostone/biosynthesis , Female , Humans , Hypersensitivity, Delayed , Inflammation Mediators/metabolism , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/physiology , Macrophages/enzymology , Male , Mice , Mice, Inbred DBA , Mice, Knockout , Pain/drug therapy , Prostaglandin-E Synthases
SELECTION OF CITATIONS
SEARCH DETAIL
...