Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Mol Pharm ; 19(6): 1795-1802, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35266720

ABSTRACT

Human skin equivalents emerged as novel tools in preclinical dermatological research. It is being claimed that they may bridge the translational gap between preclinical and clinical research, yet only a few studies have investigated their suitability for preclinical drug testing so far. Therefore, we investigated if inflammatory skin equivalents, which emulate hallmarks of atopic dermatitis (AD), are suitable to assess the anti-inflammatory effects of dexamethasone (DXM) in a cream formulation or loaded onto dendritic core-multishell nanoparticles. Topical DXM application resulted in significantly decreased expression of the proinflammatory cytokine TSLP, increased expression of the skin barrier protein involucrin, and facilitated glucocorticoid receptor translocation in a dose-dependent manner. Further, DXM treatment inhibited gene expression of extracellular matrix components, potentially indicative of the known skin atrophy-inducing side effects of glucocorticoids. Overall, we were able to successfully assess the anti-inflammatory effects of DXM and the superiority of the nanoparticle formulation. Nevertheless the identification of robust readout parameters proved challenging and requires careful study design.


Subject(s)
Anti-Inflammatory Agents , Nanoparticles , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Dexamethasone/pharmacology , Humans , Skin/metabolism , Skin Absorption
2.
Pharmaceutics ; 12(9)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927792

ABSTRACT

Standard experimental set-ups for the assessment of skin penetration are typically performed on skin explants with an intact skin barrier or after a partial mechanical or chemical perturbation of the stratum corneum, but they do not take into account biochemical changes. Among the various pathological alterations in inflamed skin, aberrant serine protease (SP) activity directly affects the biochemical environment in the superficial compartments, which interact with topically applied formulations. It further impacts the skin barrier structure and is a key regulator of inflammatory mediators. Herein, we used short-term cultures of ex vivo human skin treated with trypsin and plasmin as inflammatory stimuli to assess the penetration and biological effects of the anti-inflammatory drug dexamethasone (DXM), encapsulated in core multishell-nanocarriers (CMS-NC), when compared to a standard cream formulation. Despite a high interindividual variability, the combined pretreatment of the skin resulted in an average 2.5-fold increase of the transepidermal water loss and swelling of the epidermis, as assessed by optical coherence tomography, as well as in a moderate increase of a broad spectrum of proinflammatory mediators of clinical relevance. The topical application of DXM-loaded CMS-NC or DXM standard cream revealed an increased penetration into SP-treated skin when compared to untreated control skin with an intact barrier. Both formulations, however, delivered sufficient amounts of DXM to effectively suppress the production of interleukin-6 (IL-6), interleukin-8 (IL-8) and Thymic Stromal Lymphopoietin (TSLP). In conclusion, we suggest that the herein presented ex vivo inflammatory skin model is functional and could improve the selection of promising drug delivery strategies for anti-inflammatory compounds at early stages of development.

3.
Theranostics ; 10(14): 6322-6336, 2020.
Article in English | MEDLINE | ID: mdl-32483455

ABSTRACT

Fluorescence microscopy is widely used for high content screening in 2D cell cultures and 3D models. In particular, 3D tissue models are gaining major relevance in modern drug development. Enabling direct multiparametric evaluation of complex samples, fluorescence lifetime imaging (FLIM) adds a further level to intensity imaging by the sensitivity of the fluorescence lifetime to the microenvironment. However, the use of FLIM is limited amongst others by the acquisition of sufficient photon numbers without phototoxic effects in live cells. Herein, we developed a new cluster-based analysis method to enhance insight, and significantly speed up analysis and measurement time for the accurate translation of fluorescence lifetime information into pharmacological pathways. Methods: We applied a fluorescently-labeled dendritic core-multishell nanocarrier and its cargo Bodipy as molecules of interest (MOI) to human cells and reconstructed human tissue. Following the sensitivity and specificity assessment of the fitting-free Cluster-FLIM analysis of data in silico and in vitro, we evaluated the dynamics of cellular molecule uptake and intracellular interactions. For 3D live tissue investigations, we applied multiphoton (mp) FLIM. Owing to Cluster-FLIM's statistics-based fitting-free analysis, we utilized this approach for automatization. Results: To discriminate the fluorescence lifetime signatures of 5 different fluorescence species in a single color channel, the Cluster-FLIM method requires only 170, respectively, 90 counts per pixel to obtain 95% sensitivity (hit rate) and 95% specificity (correct rejection rate). Cluster-FLIM revealed cellular interactions of MOIs, representing their spatiotemporal intracellular fate. In a setting of an automated workflow, the assessment of lysosomal trapping of the MOI revealed relevant differences between normal and tumor cells, as well as between 2D and 3D models. Conclusion: The automated Cluster-FLIM tool is fitting-free, providing images with enhanced information, contrast, and spatial resolution at short exposure times and low fluorophore concentrations. Thereby, Cluster-FLIM increases the applicability of FLIM in high content analysis of target molecules in drug development and beyond.


Subject(s)
Fibroblasts/metabolism , Fluorescent Dyes/chemistry , Keratinocytes/metabolism , Microscopy, Fluorescence, Multiphoton/methods , Nanoparticles/administration & dosage , Nanoparticles/metabolism , Skin/metabolism , Algorithms , Carbocyanines/chemistry , Child , Drug Evaluation, Preclinical/methods , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Keratinocytes/cytology , Keratinocytes/drug effects , Male , Nanoparticles/chemistry , Skin/cytology , Skin/drug effects
4.
Pharmaceutics ; 12(5)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349460

ABSTRACT

Nanocrystals represent an improvement over the traditional nanocarriers for dermal application, providing the advantages of 100% drug loading, a large surface area, increased adhesion, and the potential for hair follicle targeting. To investigate their advantage for drug delivery, compared to a base cream formulation, dexamethasone (Dx), a synthetic glucocorticoid frequently used for the treatment of inflammatory skin diseases, was covalently linked with the paramagnetic probe 3-(carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) to DxPCA. To investigate the penetration efficiency between these two vehicles, electron paramagnetic resonance (EPR) spectroscopy was used, which allows the quantification of a spin-labeled drug in different skin layers and the monitoring of the drug release. The penetration behavior in excised healthy and barrier-disrupted porcine skin was monitored by EPR, and subsequently analyzed using a numerical diffusion model. As a result, diffusion constants and free energy values in the different layers of the skin were identified for both formulations. Dx-nanocrystals showed a significantly increased drug amount that penetrated into viable epidermis and dermis of intact (factor 3) and barrier-disrupted skin (factor 2.1) compared to the base cream formulation. Furthermore, the observed fast delivery of the spin-labeled drug into the skin (80% DxPCA within 30 min) and a successive release from the aggregate unit into the viable tissue makes these nanocrystals very attractive for clinical applications.

5.
J Control Release ; 299: 138-148, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30797867

ABSTRACT

In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 µg DXM/cm2 skin encapsulated in CMS-NC (12 nm diameter, 5.8% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25% CD1a+ cells were found within the epidermal CMS-NC+ population compared to approximately 3% CD1a+/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Dexamethasone/administration & dosage , Nanocapsules/chemistry , Skin Absorption , Skin/metabolism , Administration, Cutaneous , Anti-Inflammatory Agents/pharmacokinetics , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/metabolism , Dexamethasone/pharmacokinetics , Drug Carriers/metabolism , Drug Delivery Systems , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Skin/drug effects
6.
J Control Release ; 295: 214-222, 2019 02 10.
Article in English | MEDLINE | ID: mdl-30597246

ABSTRACT

Nanoparticles (NPs) are promising carriers for dermal and transdermal drug delivery. However, the underlying dynamics of drug release from the NPs, especially, how the physiological changes of diseased skin influence the drug release, remain poorly understood. We utilized electron paramagnetic resonance (EPR) and confocal laser scanning microscopy (CLSM) to comprehensively investigate the penetration behavior of a spin-labeled dexamethasone (DxPCA)-loaded pH-sensitive Eudragit® L 100 NP on intact and barrier-disrupted skins. The EPR investigation showed that a rapid in vitro DxPCA release from the NPs was triggered above pH 5.9. It also demonstrated that the NPs considerably improved the cutaneous penetration of the model drug in comparison to a commercial cream. Besides, as compared to the intact skin, a faster drug release and a higher drug penetration into the viable skin layers were obtained with barrier-disrupted skin. In accordance, CLSM studies confirmed that the NPs enhanced the penetration of the lipophilic model drug Nile red (NR) across the skin, whose penetration depth into glabrous skin was 160 µm. Moreover, a significant transfollicular penetration of NR from the NPs was observed. In conclusion, the pH-sensitive Eudragit® L 100 NPs improved the cutaneous penetration and controlled the release of a lipophilic drug, especially on barrier-disrupted skin. This may allow targeted drug delivery to lesional skin, avoiding side effects.


Subject(s)
Delayed-Action Preparations/chemistry , Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Nanoparticles/chemistry , Polymethacrylic Acids/chemistry , Administration, Cutaneous , Animals , Dexamethasone/pharmacokinetics , Drug Liberation , Glucocorticoids/pharmacokinetics , Humans , Hydrogen-Ion Concentration , Skin/metabolism , Skin Absorption , Swine
7.
Biomaterials ; 162: 60-70, 2018 04.
Article in English | MEDLINE | ID: mdl-29438881

ABSTRACT

Owing their unique chemical and physical properties core-multishell (CMS) nanocarriers are thought to underlie their exploitable biomedical use for a topical treatment of skin diseases. This highlights the need to consider not only the efficacy of CMS nanocarriers but also the potentially unpredictable and adverse consequences of their exposure thereto. As CMS nanocarriers are able to penetrate into viable layers of normal and stripped human skin ex vivo as well as in in vitro skin disease models the understanding of nanoparticle crosstalk with components of the immune system requires thorough investigation. Our studies highlight the biocompatible properties of CMS nanocarriers on Langerhans cells of the skin as they did neither induce cytotoxicity and genotoxicity nor cause reactive oxygen species (ROS) or an immunological response. Nevertheless, CMS nanocarriers were efficiently taken up by Langerhans cells via divergent endocytic pathways. Bioimaging of CMS nanocarriers by fluorescence lifetime imaging microscopy (FLIM) and flow cytometry indicated not only a localization within the lysosomes but also an energy-dependent exocytosis of unmodified CMS nanocarriers into the extracellular environment.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Skin/cytology , Cell Line , Cell Survival , Comet Assay , Flow Cytometry , Humans , Langerhans Cells/metabolism , Microscopy, Fluorescence , Reactive Oxygen Species/metabolism
8.
Nanoscale Res Lett ; 12(1): 64, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28116609

ABSTRACT

Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e.g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment.Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection.Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis.Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin.

9.
Eur J Pharm Biopharm ; 116: 102-110, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28043865

ABSTRACT

An improvement of the penetration efficiency combined with the controlled release of actives in the skin can facilitate the medical treatment of skin diseases immensely. Dexamethasone (Dx), a synthetic glucocorticoid, is frequently used for the treatment of inflammatory skin diseases. To investigate the penetration of nano-sized lipid particles (NLP) loaded with Dx in comparison to a commercially available base cream, different techniques were applied. Electron paramagnetic resonance (EPR) spectroscopy was used to monitor the penetration of Dx, which was covalently labeled with the spin probe 3-(Carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA). The penetration into hair follicles was studied using confocal laser scanning microscopy (CLSM) with curcumin-loaded NLP. The penetration of the vehicle was followed by confocal Raman microscopy (CRM). Penetration studies using excised porcine skin revealed a more than twofold higher penetration efficiency for DxPCA into the stratum corneum (SC) after 24h incubation compared to 4h incubation when loaded to the NLP, whereas when applied in the base cream, almost no further penetration was observed beyond 4h. The distribution of DxPCA within the SC was investigated by consecutive tape stripping. The release of DxPCA from the base cream after 24h in deeper SC layers and the viable epidermis was shown by EPR. For NLP, no release from the carrier was observed, although DxPCA was detectable in the skin after the complete SC was removed. This phenomenon can be explained by the penetration of the NLP into the hair follicles. However, penetration profiles measured by CRM indicate that NLP did not penetrate as deeply into the SC as the base cream formulation. In conclusion, NLP can improve the accumulation of Dx in the skin and provide a reservoir within the SC and in the follicular infundibula.


Subject(s)
Dexamethasone/administration & dosage , Dexamethasone/chemistry , Lipids/administration & dosage , Lipids/blood , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Skin/metabolism , Animals , Curcumin/administration & dosage , Curcumin/chemistry , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Ear , Electron Spin Resonance Spectroscopy/methods , Epidermis/metabolism , Excipients/administration & dosage , Excipients/chemistry , Glucocorticoids/administration & dosage , Glucocorticoids/chemistry , Hair Follicle/metabolism , Microscopy, Confocal/methods , Particle Size , Skin Absorption , Swine
10.
Polymers (Basel) ; 9(8)2017 Jul 29.
Article in English | MEDLINE | ID: mdl-30970993

ABSTRACT

We here present the synthesis and characterization of a set of biodegradable core⁻multishell (CMS) nanocarriers. The CMS nanocarrier structure consists of hyperbranched polyglycerol (hPG) as core material, a hydrophobic (12, 15, 18, 19, and 36 C-atoms) inner and a polyethylene glycol monomethyl ether (mPEG) outer shell that were conjugated by ester bonds only to reduce the toxicity of metabolites. The loading capacities (LC) of the drugs, dexamethasone and tacrolimus, and the aggregate formation, phase transitions, and degradation kinetics were determined. The intermediate inner shell length (C15) system had the best overall performance with good LCs for both drugs as well as a promising degradation and release kinetics, which are of interest for dermal delivery.

11.
Eur J Pharm Biopharm ; 116: 31-37, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28012989

ABSTRACT

Bacterial biosurfactants are nature's strategy to solubilize and ingest hydrophobic molecules and nutrients using a fully biodegradable transport system. Eight structurally defined rhamnolipids were selected and investigated as potential drug carrier systems. Depending on the molecular structures defining their packing parameters, the rhamnolipids were found to form spherical nanoparticles with precisely defined average sizes between 5 and 100nm, low polydispersity, and stability over a broad concentration range as revealed from dynamic light scattering and electron microscopy. As rhamnolipids were tolerated well by the human skin, rhamnolipid nanoparticles were considered for dermal drug delivery and thus loaded with hydrophobic drug molecules. Using the drug model, Nile red, dexamethasone, and tacrolimus nanoparticles charged with up to 30% drug loading (w/w) were obtained. Nanoparticles loaded with Nile red were investigated for dermal drug delivery in a Franz cell using human skin. Fluoresence microscopy of skin slices indicated the efficient penetration of the model drug into human skin, both into the stratum corneum and although to a lesser extent into the lower epidermis. Rhamnolipid nanocarriers were found to be non-toxic to primary human fibroblasts in a proliferation assay and thus are considered candidates for the dermal delivery of drugs.


Subject(s)
Dexamethasone/chemistry , Glycolipids/administration & dosage , Glycolipids/chemistry , Nanoparticles/chemistry , Oxazines/chemistry , Skin/metabolism , Tacrolimus/chemistry , Administration, Cutaneous , Chemistry, Pharmaceutical/methods , Dexamethasone/administration & dosage , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems/methods , Humans , Hydrophobic and Hydrophilic Interactions , Nanoparticles/administration & dosage , Oxazines/administration & dosage , Particle Size , Skin Absorption/drug effects , Tacrolimus/administration & dosage
12.
Nanomedicine ; 13(1): 317-327, 2017 01.
Article in English | MEDLINE | ID: mdl-27697619

ABSTRACT

Inflammatory disorders of the skin pose particular therapeutic challenges due to complex structural and functional alterations of the skin barrier. Penetration of several anti-inflammatory drugs is particularly problematic in psoriasis, a common dermatitis condition with epidermal hyperplasia and hyperkeratosis. Here, we tested in vivo dermal penetration and biological effects of dendritic core-multishell-nanocarriers (CMS) in a murine skin model of psoriasis and compared it to healthy skin. In both groups, CMS exclusively localized to the stratum corneum of the epidermis with only very sporadic uptake by Langerhans cells. Furthermore, penetration into the viable epidermis of nile red as a model for lipophilic compounds was enhanced by CMS. CMS proved fully biocompatible in several in vitro assays and on normal and psoriatic mouse skin. The observations support the concept of CMS as promising candidates for drug delivery in inflammatory hyperkeratotic skin disorders in vivo.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Psoriasis/drug therapy , Skin Absorption , Administration, Cutaneous , Animals , Biocompatible Materials/chemistry , Cells, Cultured , Epidermis/drug effects , Epidermis/metabolism , Humans , Keratinocytes/drug effects , Male , Mice , Mice, Inbred BALB C
13.
Eur J Pharm Biopharm ; 110: 19-23, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27789357

ABSTRACT

The targeted design of nanoparticles for efficient drug loading and defined release profiles is even after 25years of research on lipid-based nanoparticles still no routine procedure. It requires detailed knowledge about the interaction of the drug with the lipid compounds and about its localisation and distribution in the nanoparticle. We present here an investigation on nano-sized lipid particles (NLP) composed of Gelucire and Witepsol as solid lipids, and Capryol as liquid lipid, loaded with Dexamethasone, a glucocorticoid used in topical treatment of inflammatory dermal diseases. The interactions of Dexamethasone, which was spin-labelled by 3-(Carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (DxPCA), with its microenvironment are monitored by EPR spectroscopy at 94GHz at low temperatures. The mobility of the spin-labelled drug was probed by X-band EPR at room temperature. In order to relate the magnetic and dynamic parameters deduced from EPR to the local environment of the spin probe in the NLP, investigations of DxPCA in the individual lipid compounds were carried out. The magnetic parameters reflecting the polarity of DxPCA's environment as well as the parameters describing the mobility of the drug reveal that in the case of colloidal dispersions of the lipids and also the NLP DxPCA is attached to the surface of the nanoparticles. Although the lipophilic drug is almost exclusively associated with the NLP in aqueous solution, dilution experiments show, that it can be easily released from the nanoparticle.


Subject(s)
Drug Carriers/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Cold Temperature , Colloids/chemistry , Dexamethasone/chemistry , Drug Design , Electron Spin Resonance Spectroscopy , Fats/chemistry , Glucocorticoids/chemistry , Oils/chemistry , Particle Size , Polymers/chemistry , Propylene Glycols/chemistry , Solubility , Spin Labels , Surface Properties , Triglycerides/chemistry
14.
J Control Release ; 242: 50-63, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27349353

ABSTRACT

Drug loaded dendritic core-multishell (CMS) nanocarriers are of especial interest for the treatment of skin diseases, owing to their striking dermal delivery efficiencies following topical applications. CMS nanocarriers are composed of a polyglycerol core, connected by amide-bonds to an inner alkyl shell and an outer methoxy poly(ethylene glycol) shell. Since topically applied nanocarriers are subjected to biodegradation, the application of conventional amide-based CMS nanocarriers (10-A-18-350) has been limited by the potential production of toxic polyglycerol amines. To circumvent this issue, three tailored ester-based CMS nanocarriers (10-E-12-350, 10-E-15-350, 10-E-18-350) of varying inner alkyl chain length were synthesized and comprehensively characterized in terms of particle size, drug loading, biodegradation and dermal drug delivery efficiency. Dexamethasone (DXM), a potent drug widely used for the treatment of inflammatory skin diseases, was chosen as a therapeutically relevant test compound for the present study. Ester- and amide-based CMS nanocarriers delivered DXM more efficiently into human skin than a commercially available DXM cream. Subsequent in vitro and in vivo toxicity studies identified CMS (10-E-15-350) as the most biocompatible carrier system. The anti-inflammatory potency of DXM-loaded CMS (10-E-15-350) nanocarriers was assessed in TNFα supplemented skin models, where a significant reduction of the pro-inflammatory cytokine IL-8 was seen, with markedly greater efficacy than commercial DXM cream. In summary, we report the rational design and characterization of tailored, biodegradable, ester-based CMS nanocarriers, and their subsequent stepwise screening for biocompatibility, dermal delivery efficiency and therapeutic efficacy in a top-down approach yielding the best carrier system for topical applications.


Subject(s)
Dendrimers/chemistry , Dexamethasone/administration & dosage , Drug Delivery Systems , Nanoparticles , Administration, Cutaneous , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/toxicity , Dexamethasone/pharmacokinetics , Dexamethasone/toxicity , Disease Models, Animal , Drug Carriers/chemistry , Female , Glycerol/chemistry , Humans , Inflammation/drug therapy , Inflammation/pathology , Male , Particle Size , Polyethylene Glycols/chemistry , Polymers/chemistry , Rats , Rats, Sprague-Dawley , Skin/metabolism , Skin Absorption , Skin Diseases/drug therapy , Skin Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...