Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37937146

ABSTRACT

Purpose: Cone-beam CT (CBCT) is widespread in abdominal interventional imaging, but its long acquisition time makes it susceptible to patient motion. Image-based autofocus has shown success in CBCT deformable motion compensation, via deep autofocus metrics and multi-region optimization, but it is challenged by the large parameter dimensionality required to capture intricate motion trajectories. This work leverages the differentiable nature of deep autofocus metrics to build a novel optimization strategy, Multi-Stage Adaptive Spine Autofocus (MASA), for compensation of complex deformable motion in abdominal CBCT. Methods: MASA poses the autofocus problem as a multi-stage adaptive sampling strategy of the motion trajectory, sampled with Hermite spline basis with variable amplitude and knot temporal positioning. The adaptive method permits simultaneous optimization of the sampling phase, local temporal sampling density, and time-dependent amplitude of the motion trajectory. The optimization is performed in a multi-stage schedule with increasing number of knots that progressively accommodates complex trajectories in late stages, preconditioned by coarser components from early stages, and with minimal increase in dimensionality. MASA was evaluated in controlled simulation experiments with two types of motion trajectories: i) combinations of slow drifts with sudden jerk (sigmoid) motion; and ii) combinations of periodic motion sources of varying frequency into multi-frequency trajectories. Further validation was obtained in clinical data from liver CBCT featuring motion of contrast-enhanced vessels, and soft-tissue structures. Results: The adaptive sampling strategy provided successful motion compensation in sigmoid trajectories, compared to fixed sampling strategies (mean SSIM increase of 0.026 compared to 0.011). Inspection of the estimated motion showed the capability of MASA to automatically allocate larger sampling density to parts of the scan timeline featuring sudden motion, effectively accommodating complex motion without increasing the problem dimension. Experiments on multi-frequency trajectories with 3-stage MASA (5, 10, and 15 knots) yielded a twofold SSIM increase compared to single-stage autofocus with 15 knots (0.076 vs 0.040, respectively). Application of MASA to clinical datasets resulted in simultaneous improvement on the delineation of both contrast-enhanced vessels and soft-tissue structures in the liver. Conclusion: A new autofocus framework, MASA, was developed including a novel multi-stage technique for adaptive temporal sampling of the motion trajectory in combination with fully differentiable deep autofocus metrics. This novel adaptive sampling approach is a crucial step for application of deformable motion compensation to complex temporal motion trajectories.

2.
Article in English | MEDLINE | ID: mdl-36381251

ABSTRACT

Cone-beam CT (CBCT) is widely used for guidance in interventional radiology but it is susceptible to motion artifacts. Motion in interventional CBCT features a complex combination of diverse sources including quasi-periodic, consistent motion patterns such as respiratory motion, and aperiodic, quasi-random, motion such as peristalsis. Recent developments in image-based motion compensation methods include approaches that combine autofocus techniques with deep learning models for extraction of image features pertinent to CBCT motion. Training of such deep autofocus models requires the generation of large amounts of realistic, motion-corrupted CBCT. Previous works on motion simulation were mostly focused on quasi-periodic motion patterns, and reliable simulation of complex combined motion with quasi-random components remains an unaddressed challenge. This work presents a framework aimed at synthesis of realistic motion trajectories for simulation of deformable motion in soft-tissue CBCT. The approach leveraged the capability of conditional generative adversarial network (GAN) models to learn the complex underlying motion present in unlabeled, motion-corrupted, CBCT volumes. The approach is designed for training with unpaired clinical CBCT in an unsupervised fashion. This work presents a first feasibility study, in which the model was trained with simulated data featuring known motion, providing a controlled scenario for validation of the proposed approach prior to extension to clinical data. Our proof-of-concept study illustrated the potential of the model to generate realistic, variable simulation of CBCT deformable motion fields, consistent with three trends underlying the designed training data: i) the synthetic motion induced only diffeomorphic deformations - with Jacobian Determinant larger than zero; ii) the synthetic motion showed median displacement of 0. 5 mm in regions predominantly static in the training (e.g., the posterior aspect of the patient laying supine), compared to a median displacement of 3.8 mm in regions more prone to motion in the training; and iii) the synthetic motion exhibited predominant directionality consistent with the training set, resulting in larger motion in the superior-inferior direction (median and maximum amplitude of 4.58 mm and 20 mm, > 2x larger than the two remaining direction). Together, the proposed framework shows the feasibility for realistic motion simulation and synthesis of variable CBCT data.

3.
Article in English | MEDLINE | ID: mdl-36381250

ABSTRACT

Deformable motion is one of the main challenges to image quality in interventional cone beam CT (CBCT). Autofocus methods have been successfully applied for deformable motion compensation in CBCT, using multi-region joint optimization approaches that leverage the moderately smooth spatial variation motion of the deformable motion field with a local neighborhood. However, conventional autofocus metrics enforce images featuring sharp image-appearance, but do not guarantee the preservation of anatomical structures. Our previous work (DL-VIF) showed that deep convolutional neural networks (CNNs) can reproduce metrics of structural similarity (visual information fidelity - VIF), removing the need for a matched motion-free reference, and providing quantification of motion degradation and structural integrity. Application of DL-VIF within local neighborhoods is challenged by the large variability of local image content across a CBCT volume, and requires global context information for successful evaluation of motion effects. In this work, we propose a novel deep autofocus metric, based on a context-aware, multi-resolution, deep CNN design. In addition to the inclusion of contextual information, the resulting metric generates a voxel-wise distribution of reference-free VIF values. The new metric, denoted CADL-VIF, was trained on simulated CBCT abdomen scans with deformable motion at random locations and with amplitude up to 30 mm. The CADL-VIF achieved good correlation with the ground truth VIF map across all test cases with R2 = 0.843 and slope = 0.941. When integrated into a multi-ROI deformable motion compensation method, CADL-VIF consistently reduced motion artifacts, yielding an average increase in SSIM of 0.129 in regions with severe motion and 0.113 in regions with mild motion. This work demonstrated the capability of CADL-VIF to recognize anatomical structures and penalize unrealistic images, which is a key step in developing reliable autofocus for complex deformable motion compensation in CBCT.

4.
Article in English | MEDLINE | ID: mdl-36381563

ABSTRACT

Purpose: Cone-beam CT has become commonplace for 3D guidance in interventional radiology (IR), especially for vascular procedures in which identification of small vascular structures is crucial. However, its long image acquisition time poses a limit to image quality due to soft-tissue deformable motion that hampers visibility of small vessels. Autofocus motion compensation has shown promising potential for soft-tissue deformable motion compensation, but it lacks specific target to the imaging task. This work presents an approach for deformable motion compensation targeted at imaging of vascular structures. Methods: The proposed method consists on a two-stage framework for: i) identification of contrast-enhanced blood vessels in 2D projection data and delineation of an approximate region covering the vascular target in the volume space, and, ii) a novel autofocus approach including a metric designed to promote the presence of vascular structures acting solely in the region of interest. The vesselness of the image is quantified via evaluation of the properties of the 3D image Hessian, yielding a vesselness filter that gives larger values to voxels candidate to be part of a tubular structure. A cost metric is designed to promote large vesselness values and spatial sparsity, as expected in regions of fine vascularity. A targeted autofocus method was designed by combining the presented metric with a conventional autofocus term acting outside of the region of interest. The resulting method was evaluated on simulated data including synthetic vascularity merged with real anatomical features obtained from MDCT data. Further evaluation was obtained in two clinical datasets obtained during TACE procedures with a robotic C-arm (Artis Zeego, Siemens Healthineers). Results: The targeted vascular autofocus effectively restored the shape and contrast of the contrast-enhanced vascularity in the simulation cases, resulting in improved visibility and reduced artifacts. Segmentations performed with a single threshold value on the target vascular regions yielded a net increase of up to 42% in DICE coefficient computed against the static reference. Motion compensation in clinical datasets resulted in improved visibility of vascular structures, observed in maximum intensity projections of the contrast-enhanced liver vessel tree. Conclusion: Targeted motion compensation for vascular imaging showed promising performance for increased identification of small vascular structures in presence of motion. The development of autofocus metrics and methods tailored to vascular imaging opens the way for reliable compensation of deformable motion while preserving the integrity of anatomical structures in the image.

5.
Phys Med Biol ; 67(12)2022 06 16.
Article in English | MEDLINE | ID: mdl-35636391

ABSTRACT

Purpose. Patient motion artifacts present a prevalent challenge to image quality in interventional cone-beam CT (CBCT). We propose a novel reference-free similarity metric (DL-VIF) that leverages the capability of deep convolutional neural networks (CNN) to learn features associated with motion artifacts within realistic anatomical features. DL-VIF aims to address shortcomings of conventional metrics of motion-induced image quality degradation that favor characteristics associated with motion-free images, such as sharpness or piecewise constancy, but lack any awareness of the underlying anatomy, potentially promoting images depicting unrealistic image content. DL-VIF was integrated in an autofocus motion compensation framework to test its performance for motion estimation in interventional CBCT.Methods. DL-VIF is a reference-free surrogate for the previously reported visual image fidelity (VIF) metric, computed against a motion-free reference, generated using a CNN trained using simulated motion-corrupted and motion-free CBCT data. Relatively shallow (2-ResBlock) and deep (3-Resblock) CNN architectures were trained and tested to assess sensitivity to motion artifacts and generalizability to unseen anatomy and motion patterns. DL-VIF was integrated into an autofocus framework for rigid motion compensation in head/brain CBCT and assessed in simulation and cadaver studies in comparison to a conventional gradient entropy metric.Results. The 2-ResBlock architecture better reflected motion severity and extrapolated to unseen data, whereas 3-ResBlock was found more susceptible to overfitting, limiting its generalizability to unseen scenarios. DL-VIF outperformed gradient entropy in simulation studies yielding average multi-resolution structural similarity index (SSIM) improvement over uncompensated image of 0.068 and 0.034, respectively, referenced to motion-free images. DL-VIF was also more robust in motion compensation, evidenced by reduced variance in SSIM for various motion patterns (σDL-VIF = 0.008 versusσgradient entropy = 0.019). Similarly, in cadaver studies, DL-VIF demonstrated superior motion compensation compared to gradient entropy (an average SSIM improvement of 0.043 (5%) versus little improvement and even degradation in SSIM, respectively) and visually improved image quality even in severely motion-corrupted images.Conclusion: The studies demonstrated the feasibility of building reference-free similarity metrics for quantification of motion-induced image quality degradation and distortion of anatomical structures in CBCT. DL-VIF provides a reliable surrogate for motion severity, penalizes unrealistic distortions, and presents a valuable new objective function for autofocus motion compensation in CBCT.


Subject(s)
Algorithms , Cone-Beam Computed Tomography , Artifacts , Cadaver , Cone-Beam Computed Tomography/methods , Humans , Image Processing, Computer-Assisted/methods , Motion
6.
Phys Med Biol ; 65(24): 245019, 2020 12 12.
Article in English | MEDLINE | ID: mdl-32590372

ABSTRACT

Accurate and consistent mental interpretation of fluoroscopy to determine the position and orientation of acetabular bone fragments in 3D space is difficult. We propose a computer assisted approach that uses a single fluoroscopic view and quickly reports the pose of an acetabular fragment without any user input or initialization. Intraoperatively, but prior to any osteotomies, two constellations of metallic ball-bearings (BBs) are injected into the wing of a patient's ilium and lateral superior pubic ramus. One constellation is located on the expected acetabular fragment, and the other is located on the remaining, larger, pelvis fragment. The 3D locations of each BB are reconstructed using three fluoroscopic views and 2D/3D registrations to a preoperative CT scan of the pelvis. The relative pose of the fragment is established by estimating the movement of the two BB constellations using a single fluoroscopic view taken after osteotomy and fragment relocation. BB detection and inter-view correspondences are automatically computed throughout the processing pipeline. The proposed method was evaluated on a multitude of fluoroscopic images collected from six cadaveric surgeries performed bilaterally on three specimens. Mean fragment rotation error was 2.4 ± 1.0 degrees, mean translation error was 2.1 ± 0.6 mm, and mean 3D lateral center edge angle error was 1.0 ± 0.5 degrees. The average runtime of the single-view pose estimation was 0.7 ± 0.2 s. The proposed method demonstrates accuracy similar to other state of the art systems which require optical tracking systems or multiple-view 2D/3D registrations with manual input. The errors reported on fragment poses and lateral center edge angles are within the margins required for accurate intraoperative evaluation of femoral head coverage.


Subject(s)
Acetabulum/diagnostic imaging , Acetabulum/surgery , Fiducial Markers , Fluoroscopy , Osteotomy/standards , Automation , Humans , Imaging, Three-Dimensional , Intraoperative Period , Rotation , Time Factors , Tomography, X-Ray Computed
7.
Phys Med Biol ; 62(17): 7181-7215, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28741597

ABSTRACT

In cone-beam CT, involuntary patient motion and inaccurate or irreproducible scanner motion substantially degrades image quality. To avoid artifacts this motion needs to be estimated and compensated during image reconstruction. In previous work we showed that Fourier consistency conditions (FCC) can be used in fan-beam CT to estimate motion in the sinogram domain. This work extends the FCC to [Formula: see text] cone-beam CT. We derive an efficient cost function to compensate for [Formula: see text] motion using [Formula: see text] detector translations. The extended FCC method have been tested with five translational motion patterns, using a challenging numerical phantom. We evaluated the root-mean-square-error and the structural-similarity-index between motion corrected and motion-free reconstructions. Additionally, we computed the mean-absolute-difference (MAD) between the estimated and the ground-truth motion. The practical applicability of the method is demonstrated by application to respiratory motion estimation in rotational angiography, but also to motion correction for weight-bearing imaging of knees. Where the latter makes use of a specifically modified FCC version which is robust to axial truncation. The results show a great reduction of motion artifacts. Accurate estimation results were achieved with a maximum MAD value of 708 µm and 1184 µm for motion along the vertical and horizontal detector direction, respectively. The image quality of reconstructions obtained with the proposed method is close to that of motion corrected reconstructions based on the ground-truth motion. Simulations using noise-free and noisy data demonstrate that FCC are robust to noise. Even high-frequency motion was accurately estimated leading to a considerable reduction of streaking artifacts. The method is purely image-based and therefore independent of any auxiliary data.


Subject(s)
Cone-Beam Computed Tomography/methods , Knee/diagnostic imaging , Motion , Phantoms, Imaging , Weight-Bearing , Algorithms , Artifacts , Humans , Image Processing, Computer-Assisted/methods
8.
Med Phys ; 43(3): 1235-48, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26936708

ABSTRACT

PURPOSE: To allow for a purely image-based motion estimation and compensation in weight-bearing cone-beam computed tomography of the knee joint. METHODS: Weight-bearing imaging of the knee joint in a standing position poses additional requirements for the image reconstruction algorithm. In contrast to supine scans, patient motion needs to be estimated and compensated. The authors propose a method that is based on 2D/3D registration of left and right femur and tibia segmented from a prior, motion-free reconstruction acquired in supine position. Each segmented bone is first roughly aligned to the motion-corrupted reconstruction of a scan in standing or squatting position. Subsequently, a rigid 2D/3D registration is performed for each bone to each of K projection images, estimating 6 × 4 × K motion parameters. The motion of individual bones is combined into global motion fields using thin-plate-spline extrapolation. These can be incorporated into a motion-compensated reconstruction in the backprojection step. The authors performed visual and quantitative comparisons between a state-of-the-art marker-based (MB) method and two variants of the proposed method using gradient correlation (GC) and normalized gradient information (NGI) as similarity measure for the 2D/3D registration. RESULTS: The authors evaluated their method on four acquisitions under different squatting positions of the same patient. All methods showed substantial improvement in image quality compared to the uncorrected reconstructions. Compared to NGI and MB, the GC method showed increased streaking artifacts due to misregistrations in lateral projection images. NGI and MB showed comparable image quality at the bone regions. Because the markers are attached to the skin, the MB method performed better at the surface of the legs where the authors observed slight streaking of the NGI and GC methods. For a quantitative evaluation, the authors computed the universal quality index (UQI) for all bone regions with respect to the motion-free reconstruction. The authors quantitative evaluation over regions around the bones yielded a mean UQI of 18.4 for no correction, 53.3 and 56.1 for the proposed method using GC and NGI, respectively, and 53.7 for the MB reference approach. In contrast to the authors registration-based corrections, the MB reference method caused slight nonrigid deformations at bone outlines when compared to a motion-free reference scan. CONCLUSIONS: The authors showed that their method based on the NGI similarity measure yields reconstruction quality close to the MB reference method. In contrast to the MB method, the proposed method does not require any preparation prior to the examination which will improve the clinical workflow and patient comfort. Further, the authors found that the MB method causes small, nonrigid deformations at the bone outline which indicates that markers may not accurately reflect the internal motion close to the knee joint. Therefore, the authors believe that the proposed method is a promising alternative to MB motion management.


Subject(s)
Artifacts , Cone-Beam Computed Tomography , Imaging, Three-Dimensional/methods , Knee Joint/diagnostic imaging , Knee Joint/physiology , Movement , Humans , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...