Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Mol Biol ; 88(1-2): 85-99, 2015 May.
Article in English | MEDLINE | ID: mdl-25800365

ABSTRACT

Cytochrome P450s are among the largest protein coding gene families in plant genomes. However, majority of the genes remain uncharacterized. Here, we report the characterization of dss1, a rice mutant showing dwarfism and reduced grain size. The dss1 phenotype is caused by a non-synonymous point mutation we identified in DSS1, which is member of a P450 gene cluster located on rice chromosome 3 and corresponds to the previously reported CYP96B4/SD37 gene. Phenotypes of several dwarf mutants characterized in rice are associated with defects in the biosynthesis or perception of the phytohormones gibberellins (GAs) and brassinosteroids (BRs). However, both GA and BR failed to rescue the dss1 phenotype. Hormone profiling revealed the accumulation of abscisic acid (ABA) and ABA metabolites, as well as significant reductions in GA19 and GA53 levels, precursors of the bioactive GA1, in the mutant. The dss1 contents of cytokinin and auxins were not significantly different from wild-type plants. Consistent with the accumulation of ABA and metabolites, germination and early growth was delayed in dss1, which also exhibited an enhanced tolerance to drought. Additionally, expressions of members of the DSS1/CYP96B gene cluster were regulated by drought stress and exogenous ABA. RNA-seq-based transcriptome profiling revealed, among others, that cell wall-related genes and genes involved in lipid metabolism were up- and down-regulated in dss1, respectively. Taken together, these findings suggest that DSS1 mediates growth and stress responses in rice by fine-tuning GA-to-ABA balance, and might as well play a role in lipid metabolism.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Droughts , Oryza/enzymology , Oryza/growth & development , Plant Proteins/metabolism , Stress, Physiological , Abscisic Acid/metabolism , Amino Acid Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Cloning, Molecular , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Endoplasmic Reticulum/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Gibberellins/metabolism , Molecular Sequence Data , Multigene Family , Mutation/genetics , Oryza/genetics , Oryza/physiology , Phenotype , Plant Proteins/chemistry , Plant Proteins/genetics
2.
Mol Genet Genomics ; 290(2): 611-22, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25367283

ABSTRACT

Lesion mimic mutants (LMMs) provide a useful tool to study defense-related programmed cell death (PCD) in plants. Although a number of LMMs have been identified in multiple species, most of the candidate genes are yet to be isolated. Here, we report the identification and characterization of a novel rice (Oryza sativa L.) lesion mimic resembling (lmr) mutant, and cloning of the corresponding LMR gene. The LMR locus was initially delineated to 1.2 Mb region on chromosome 6, which was further narrowed down to 155-kb using insertions/deletions (INDELs) and cleavage amplified polymorphic sequence markers developed in this study. We sequenced the open reading frames predicted within the candidate genomic region, and identified a G-A base substitution causing a premature translation termination in a gene that encodes an ATPase associated with various cellular activities type (AAA-type) protein. RNA interference transgenic lines with reduced LMR transcripts exhibited the lesion mimic phenotype similar to that of lmr plants. Furthermore, expression of the wild-type LMR in the mutant background complemented the lesion phenotype, confirming that the mutation identified in LMR is responsible for the mutant phenotype. The pathogenesis-related (PR) genes PBZ1 and PR1 were induced in lmr, which also showed enhanced resistance to rice blast (Magnaporthe oryzae) and bacterial blight (Xanthomonas oryzae pv. oryzae), suggesting LMR is a negative regulator of cell death in rice. The identification of lmr and cloning of the corresponding LMR gene provide an additional resource for the study of PCD in plants.


Subject(s)
Adenosine Triphosphatases/genetics , Oryza/enzymology , Plant Leaves/enzymology , Plant Proteins/genetics , Adenosine Triphosphatases/biosynthesis , Amino Acid Sequence , Chloroplasts/enzymology , Cloning, Molecular , Disease Resistance , Genetic Association Studies , Genetic Linkage , Molecular Sequence Data , Oryza/genetics , Phenotype , Phylogeny , Plant Leaves/genetics , Plant Proteins/biosynthesis , Protein Transport , Sequence Analysis, DNA
3.
Genes Genet Syst ; 87(3): 169-79, 2012.
Article in English | MEDLINE | ID: mdl-22976392

ABSTRACT

The rice (Oryza sativa L.) lesion mimic and senescence (lms) EMS-mutant, identified in a japonica cultivar Hitomebore, is characterized by a spontaneous lesion mimic phenotype during its vegetative growth, an accelerated senescence after flowering, and enhanced resistance to rice blast (Magnaporthe oryzae). To isolate the OsLMS gene, we crossed the lms mutant to Kasalath (indica), and used mutant F(2) plants to initially map the candidate region to about 322-kb on the long arm of chromosome 2. Illumina whole-genome re-sequencing of the mutant and aligning the reads to Hitomebore reference sequence within the candidate region delineated by linkage analysis identified a G to A nucleotide substitution. The mutation corresponded to the exon-intron splicing junction of a novel gene that encodes a carboxyl-terminal domain (CTD) phosphatase domain and two double stranded RNA binding motifs (dsRBM) containing protein. By PCR amplification, we confirmed that the mutation causes splicing error that is predicted to introduce a premature stop codon. RNA interference (RNAi) transgenic lines with suppressed expression of LMS gene exhibited the lesion mimic phenotype, confirming that the mutation identified in LMS is responsible for the mutant phenotype. OsLMS shares a moderate amino-acid similarity to the Arabidopsis FIERY2/CPL1 gene, which is known to control many plant processes such as stress response and development. Consistence with this similarity, the lms mutant shows sensitivity to cold stress at the early growth stage, suggesting that LMS is a negative regulator of stress response in rice.


Subject(s)
Oryza , RNA, Double-Stranded , Genes, Plant , Mutation , Oryza/genetics , Phenotype , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...