Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 81(1): 281, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940922

ABSTRACT

As human skin comes into contact with the tiny hairs or setae of the oak processionary caterpillar, Thaumetopoea processionea, a silent yet intense chemical confrontation occurs. The result is a mix of issues: skin rashes and an intense itching that typically lasts days and weeks after the contact. This discomfort poses a significant health threat not only to humans but also to animals. In Western Europe, the alarming increase in outbreaks extends beyond areas near infested trees due to the dispersion of the setae. Predictions indicate a sustained rise in outbreaks, fueled by global changes favoring the caterpillar's survival and distribution. Currently, the absence of an efficient treatment persists due to significant gaps in our comprehension of the pathophysiology associated with this envenomation. Here, we explored the interaction between the venom extract derived from the setae of T. processionea and voltage- and ligand-gated ion channels and receptors. By conducting electrophysiological analyses, we discovered ex vivo evidence highlighting the significant role of TPTX1-Tp1, a peptide toxin from T. processionea, in modulating TRPV1. TPTX1-Tp1 is a secapin-like peptide and demonstrates a unique ability to modulate TRPV1 channels in the presence of capsaicin, leading to cell depolarization, itch and inflammatory responses. This discovery opens new avenues for developing a topical medication, suggesting the incorporation of a TRPV1 blocker as a potential solution for the local effects caused by T. processionea.


Subject(s)
TRPV Cation Channels , TRPV Cation Channels/metabolism , Animals , Humans , Arthropod Venoms , Moths , Skin/metabolism , Skin/pathology , Larva/metabolism
3.
Gigascience ; 10(3)2021 03 25.
Article in English | MEDLINE | ID: mdl-33764467

ABSTRACT

Venom research is a highly multidisciplinary field that involves multiple subfields of biology, informatics, pharmacology, medicine, and other areas. These different research facets are often technologically challenging and pursued by different teams lacking connection with each other. This lack of coordination hampers the full development of venom investigation and applications. The COST Action CA19144-European Venom Network was recently launched to promote synergistic interactions among different stakeholders and foster venom research at the European level.


Subject(s)
Venoms
4.
C R Biol ; 333(5): 395-404, 2010 May.
Article in English | MEDLINE | ID: mdl-20451881

ABSTRACT

East Antarctic octopods were identified by sequencing mtCOI and using four analytical approaches: Neighbor-joining by Kimura-2-Parameter-based distances, character-based, BLAST, and Bayesian Inference of Phylogeny. Although the distance-based analytical approaches identified a high proportion of the sequences (99.5% to genus and 88.1% to species level), these results are undermined by the absence of a clear gap between intra- and interspecific variation. The character-based approach gave highly conflicting results compared to the distance-based methods and failed to identify apomorphic characters for many of the species. While a DNA independent approach is necessary for validation of the method comparisons, crude morphological observations give early support to the distance-based results and indicate extensive range expansions of several species compared to previous studies. Furthermore, the use of distance-based phylogenetic methods nevertheless group specimens into plausible species clades that are highly useful in non-taxonomical or non-systematic studies.


Subject(s)
Octopodiformes/genetics , Animals , Antarctic Regions , Base Sequence , Bayes Theorem , Cephalopoda/genetics , DNA/genetics , DNA Primers , Gene Amplification , Genetic Variation , Molecular Sequence Data , Octopodiformes/classification , Phylogeny , Polymerase Chain Reaction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...