Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(36): e2301526, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37300308

ABSTRACT

High-entropy alloys (HEAs) with their almost limitless number of possible compositions have raised widespread attention in material science. Next to wear and corrosion resistive coatings, their application as tunable electrocatalysts has recently moved into the focus. On the other hand, fundamental properties of HEA surfaces like atomic and electronic structure, surface segregation and diffusion as well as adsorption on HEA surfaces are barely explored. The lack of research is caused by the limited availability of single-crystalline samples. In the present work, the epitaxial growth of face centered cubic (fcc) CoCrFeNi films on MgO(100) is reported. Their characterization by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) demonstrates that the layers with a homogeneous and close to equimolar elemental composition are oriented in [100] direction and aligned with the substrate to which they form an abrupt interface. X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and angle-resolved photoelectron spectroscopy are employed to study chemical composition and atomic and electronic structure of CoCrFeNi(100). It is demonstrated that epitaxially grown HEA films have the potential to fill the sample gap, allowing for fundamental studies of properties of and processes on well-defined HEA surfaces over the full compositional space.

2.
ACS Appl Mater Interfaces ; 15(15): 18889-18897, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37014708

ABSTRACT

CdSe quantum dots (QDs) combined with [FeFe] hydrogenase mimics as molecular catalytic reaction centers based on earth-abundant elements have demonstrated promising activity for photocatalytic hydrogen generation. Direct linking of the [FeFe] hydrogenase mimics to the QD surface is expected to establish a close contact between the [FeFe] hydrogenase mimics and the light-harvesting QDs, supporting the transfer and accumulation of several electrons needed to drive hydrogen evolution. In this work, we report on the functionalization of QDs immobilized in a thin-film architecture on a substrate with [FeFe] hydrogenase mimics by covalent linking via carboxylate groups as the anchoring functionality. The functionalization was monitored via UV/vis, photoluminescence, IR, and X-ray photoelectron spectroscopy and quantified via micro-X-ray fluorescence spectrometry. The activity of the functionalized thin film was demonstrated, and turn-over numbers in the range of 360-580 (short linkers) and 130-160 (long linkers) were achieved. This work presents a proof-of-concept study, showing the potential of thin-film architectures of immobilized QDs as a platform for light-driven hydrogen evolution without the need for intricate surface modifications to ensure colloidal stability in aqueous environments.

3.
Materials (Basel) ; 15(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35591332

ABSTRACT

In the present study, the thermal cycling stability of mirrors made of silicon particle reinforced aluminum compounds, containing an amount of 42 ± 2 wt.% silicon particles, is investigated with respect to thermal loading. The compound is processed by single-point diamond turning to optical mirrors that were subsequently thermally cycled in a temperature range between 40 °C to -60 °C and between 20 °C and -196 °C, respectively. The residual shape change of the optical surface was analyzed using Fizeau interferometry at room temperature. The change of shape deviation of the mirrors is compared with dilatometric studies of cylinders using the same temperature regime. Due to different coefficients of thermal expansion of the two constituents of the compound, thermal mismatch stresses in the ductile aluminum matrix and the brittle silicon particles are induced by the investigated thermal loads. The plasticity that occurs causes the formation of dislocations and stacking faults as substantiated by Transmission Electron Microscopy. It could be shown that the silicon particles lead to the cold working process of the reinforced aluminum matrix upon thermal cycling. By using interferometry, a higher dimensional stability of mirrors made of silicon particle reinforced aluminum due to thermal loads is demonstrated.

4.
Small ; 18(6): e2105776, 2022 02.
Article in English | MEDLINE | ID: mdl-34821030

ABSTRACT

The spatial and compositional complexity of 3D structures employed in today's nanotechnologies has developed to a level at which the requirements for process development and control can no longer fully be met by existing metrology techniques. For instance, buried parts in stratified nanostructures, which are often crucial for device functionality, can only be probed in a destructive manner in few locations as many existing nondestructive techniques only probe the objects surfaces. Here, it is demonstrated that grazing exit X-ray fluorescence can simultaneously characterize an ensemble of regularly ordered nanostructures simultaneously with respect to their dimensional properties and their elemental composition. This technique is nondestructive and compatible to typically sized test fields, allowing the same array of structures to be studied by other techniques. For crucial parameters, the technique provides sub-nm discrimination capabilities and it does not require access-limited large-scale research facilities as it is compatible to laboratory-scale instrumentation.


Subject(s)
Nanostructures , Nanostructures/chemistry , Nanotechnology
5.
Materials (Basel) ; 14(7)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801726

ABSTRACT

Superficial amorphization and re-crystallization of silicon in <111> and <100> orientation after irradiation by femtosecond laser pulses (790 nm, 30 fs) are studied using optical imaging and transmission electron microscopy. Spectroscopic imaging ellipsometry (SIE) allows fast data acquisition at multiple wavelengths and provides experimental data for calculating nanometric amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. For a radially Gaussian laser beam and at moderate peak fluences above the melting and below the ablation thresholds, laterally parabolic amorphous layer profiles with maximum thicknesses of several tens of nanometers were quantitatively attained. The accuracy of the calculations is verified experimentally by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). Along with topographic information obtained by atomic force microscopy (AFM), a comprehensive picture of the superficial re-solidification of silicon after local melting by femtosecond laser pulses is drawn.

6.
ACS Appl Nano Mater ; 4(12): 12913-12919, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34977477

ABSTRACT

We report on a photocatalytic system consisting of CdSe@CdS nanorods coated with a polydopamine (PDA) shell functionalized with molecular rhodium catalysts. The PDA shell was implemented to enhance the photostability of the photosensitizer, to act as a charge-transfer mediator between the nanorods and the catalyst, and to offer multiple options for stable covalent functionalization. This allows for spatial proximity and efficient shuttling of charges between the sensitizer and the reaction center. The activity of the photocatalytic system was demonstrated by light-driven reduction of nicotinamide adenine dinucleotide (NAD+) to its reduced form NADH. This work shows that PDA-coated nanostructures present an attractive platform for covalent attachment of reduction and oxidation reaction centers for photocatalytic applications.

7.
Commun Chem ; 4(1): 98, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-36697537

ABSTRACT

Porous platinum is a frequently used catalyst material in electrosynthesis and a robust broadband absorber in thermoelectrics. Pore size distribution and localization determine its properties by a large extent. However, the pore formation mechanism during the growth of the material remains unclear. In this work we elucidate the mechanism underlying electrochemical growth of nanoporous platinum layers and its control by ionic concentration and current density during electrolysis. The electrode kinetics and reduction steps of PtCl4 on platinum electrodes are investigated by cyclic voltammetry and impedance measurements. Cyclic voltammograms show three reduction steps: two steps relate to the platinum cation reduction, and one step relates to the hydrogen reduction. Hydrogen is not involved in the reduction of PtCl4, however it enables the formation of nanopores in the layers. These findings contribute to the understanding of electrochemical growth of nanoporous platinum layers in isopropanol with thickness of 100 nm to 500 nm.

8.
Nano Lett ; 20(12): 8668-8674, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33205986

ABSTRACT

Scaling information bits to ever smaller dimensions is a dominant drive for information technology (IT). Nanostructured phase change material emerges as a key player in the current green-IT endeavor with low power consumption, functional modularity, and promising scalability. In this work, we present the demonstration of microwave AC voltage induced phase change phenomenon at ∼3 GHz in single Sb2Te3 nanowires. The resistance change by a total of 6-7 orders of magnitude is evidenced by a transition from the crystalline metallic to the amorphous semiconducting phase, which is cross-examined by temperature dependent transport measurement and high-resolution electron microscopy analysis. This discovery could potentially tailor multistate information bit encoding and electrical addressability along a single nanowire, rendering technology advancement for neuro-inspired computing devices.

9.
Nanomaterials (Basel) ; 9(12)2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31847448

ABSTRACT

Cuprous oxide (Cu2O) was synthesized for the first time via an open bipolar electrochemistry (BPE) approach and characterized in parallel with the commercially available material. As compared to the reference, Cu2O formed through a BPE reaction demonstrated a decrease in particle size; an increase in photocurrent; more efficient light scavenging; and structure-correlated changes in the flat band potential and charge carrier concentration. More importantly, as-synthesized oxides were all phase-pure, defect-free, and had an average crystallite size of 20 nm. Ultimately, this study demonstrates the impact of reaction conditions (e.g., applied potential, reaction time) on structure, morphology, surface chemistry, and photo-electrochemical activity of semiconducting oxides, and at the same time, the ability to maintain a green synthetic protocol and potentially create a scalable product. In the proposed BPE synthesis, we introduced a common food supplement (potassium gluconate) as a reducing and complexing agent, and as an electrolyte, allowing us to replace the more harmful reactants that are conventionally used in Cu2O production. In addition, in the BPE process very corrosive reactants, such as hydroxides and metal precursors (required for synthesis of oxides), are generated in situ in stoichiometric quantity, providing an alternative methodology to generate various nanostructured materials in high yields under mild conditions.

10.
J Biophotonics ; 11(12): e201800013, 2018 12.
Article in English | MEDLINE | ID: mdl-29799670

ABSTRACT

Atherosclerosis is a process of thickening and stiffening of the arterial walls through the accumulation of lipids and fibrotic material, as a consequence of aging and unhealthy life style. However, not all arterial plaques lead to complications, which can lead to life-threatening events such as stroke and myocardial infarction. Diagnosis of the disease in early stages and identification of unstable atherosclerotic plaques are still challenging. It has been shown that the development of atherosclerotic plaques is an inflammatory process, where the accumulation of macrophages in the arterial walls is immanent in the early as well as late stages of the disease. We present a novel surface enhanced Raman spectroscopy (SERS)-based strategy for the detection of early stage atherosclerosis, based on the uptake of tagged gold nanoparticles by macrophages and subsequent detection by means of SERS. The results presented here provide a basis for future in vivo studies in animal models.The workflow of tracing the SERS-active nanoparticle uptake by macrophages employing confocal Raman imaging.


Subject(s)
Macrophages/metabolism , Mannose/chemistry , Mannose/metabolism , Metal Nanoparticles/chemistry , Plaque, Atherosclerotic/diagnosis , Spectrum Analysis, Raman , Biological Transport , Cell Line , Early Diagnosis , Gold/chemistry , Humans , Plaque, Atherosclerotic/metabolism , Silicon Dioxide/chemistry
11.
Biofouling ; 30(9): 1023-33, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25329612

ABSTRACT

The dynamics of adhesion and growth of bacterial cells on biomaterial surfaces play an important role in the formation of biofilms. The surface properties of biomaterials have a major impact on cell adhesion processes, eg the random/non-cooperative adhesion of bacteria. In the present study, the spatial arrangement of Escherichia coli on different biomaterials is investigated in a time series during the first hours after exposure. The micrographs are analyzed via an image processing routine and the resulting point patterns are evaluated using second order statistics. Two main adhesion mechanisms can be identified: random adhesion and non-random processes. Comparison with an appropriate null-model quantifies the transition between the two processes with statistical significance. The fastest transition to non-random processes was found to occur after adhesion on PTFE for 2-3 h. Additionally, determination of cell and cluster parameters via image processing gives insight into surface influenced differences in bacterial micro-colony formation.


Subject(s)
Biocompatible Materials/chemistry , Biofilms/growth & development , Biofouling , Escherichia coli/physiology , Bacterial Adhesion , Surface Properties , Titanium/chemistry
12.
Acta Biomater ; 10(11): 4919-4923, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25064001

ABSTRACT

The impact of the heating rate on the Ni content at the surface of the oxide layer of biomedical NiTi is explored. Heat treatment emulating common shape-setting procedures was performed by means of conventional and inductive heating for similar annealing time and temperature, applying various heating rates from ~0.25 K s(-1) to 250 K s(-1). A glow discharge optical emission spectroscopy method was established and employed to evaluate concentration profiles of Ni, Ti and O in the near-surface region at high resolution. The Ni content at the surface of the differently treated samples varies significantly, with maximum surface Ni concentrations of ~20 at.% at the lowest and ~1.5 at.% at the highest heating rate, i.e. the total amount of Ni contained in the surface region of the oxide layer decreases by >15 times. Consequently, the heating rate is a determinant for the biomedical characteristics of NiTi, especially since Ni available at the surface of the oxide layer may affect the hemocompatibility and be released promptly after surgical application of a respective implant. Furthermore, apparently contradictory results presented in the literature reporting surface Ni concentrations of ~3 at.% to >20 at.% after heat treatment are consistently explained considering the ascertained effect of the heating rate.


Subject(s)
Heating , Nickel/chemistry , Titanium/chemistry , Oxides/chemistry , Spectrum Analysis , Surface Properties
13.
J Colloid Interface Sci ; 421: 114-21, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24594039

ABSTRACT

The most commonly used material in photocatalysis is TiO2. Since TiO2 absorbs only UV-light, photosensitizers are used to extend these catalysts' absorption properties into the Vis/NIR spectral range. In this work we merge the commonly used approach of dye sensitization with the only recently developed approach of functionalizing the catalyst with plasmonically active metal nanoparticles in order to achieve synergistic effects between these two types of visible light sensitization. To this end SiO2@TiO2 nanostructures are functionalized with gold nanoparticles or a combination of gold/platinum nanoparticles loaded with Ru dyes and thoroughly characterized by means of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) imaging as well as energy dispersive X-ray spectroscopy (EDX), UV/VIS and surface enhanced resonance Raman scattering (SERRS) spectroscopy. The photocatalytic performance is tested by applying the benchmark experiment of methylene blue degradation. Spectroscopic investigations and electron microscopy proof the successful synthesis of the envisioned structure. The photocatalytic activity of the nanostructures shows up to 52% higher first order rate constants compared to the corresponding nanostructures without further dye functionalization.


Subject(s)
Coloring Agents/chemistry , Gold/chemistry , Light , Metal Nanoparticles , Ruthenium Compounds/chemistry , Silicon Dioxide/chemistry , Titanium/chemistry , Catalysis , Surface Plasmon Resonance
14.
Acta Biomater ; 10(5): 2290-5, 2014 May.
Article in English | MEDLINE | ID: mdl-24418435

ABSTRACT

The effect of annealing and deformation on short-term (21days) and long-term (8months) Ni release from biomedical NiTi wires is studied. The deformation of annealed NiTi wires causes cracking and flaking of the surface oxide layer. Flaking of oxide particles does not uncover the Ni-rich layer underneath the surface oxide layer, since at sites where flaking occurs, a thin (∼25nm) layer of oxide remains on top of this Ni-rich layer. The number of cracks in the oxide and Ni-rich layer, respectively, increases with deformation, and intercrystalline crack propagation into the Ni-rich layer and the NiTi bulk is observed. In plastically deformed wires, the cracks may remain opened, providing access of immersion liquid to these zones. Characteristics and quantity of short-term Ni release are significantly affected by the pre-deformation, resulting in an up to 2 times higher total Ni release within the first 21days of deformed compared to annealed wires. Pre-deformation does not significantly influence long-term Ni release; all annealed and deformed samples exhibit similar long-term Ni release rates. The source of Ni during short-term release is the Ni contained in the surface zone of the oxide layer. For high pre-deformation, the Ni-rich layer is a second source for Ni. This second source is also the cause for Ni release in long-term immersion experiments.


Subject(s)
Alloys/chemistry , Biocompatible Materials/chemistry , Mechanical Phenomena , Nickel/chemistry , Temperature , Titanium/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Oxides/chemistry , Surface Properties , Time Factors
15.
Acta Biomater ; 10(1): 267-75, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24071002

ABSTRACT

It is general knowledge that bacteria/surface interactions depend on the surface topography. However, this well-known dependence has so far not been included in the modeling efforts. We propose a model for calculating interaction energies between spherical bacteria and arbitrarily structured 3-D surfaces, combining the Derjaguin, Landau, Verwey, Overbeek theory and an extended surface element integration method. The influence of roughness on the interaction (for otherwise constant parameters, e.g. surface chemistry, bacterial hydrophobicity) is quantified, demonstrating that common experimental approaches which consider amplitude parameters of the surface topography but which ignore spacing parameters fail to adequately describe the influence of surface roughness on bacterial adhesion. The statistical roughness profile parameters arithmetic average height (representing an amplitude parameter) and peak density (representing a spacing parameter) both exert a distinct influence on the interaction energy. The influence of peak density on the interaction energy increases with decreasing arithmetic average height and contributes significantly to the total interaction energy with an arithmetic average height below 70 nm. With the aid of the proposed model, different sensitivity ranges of the interaction between rough surfaces and bacteria are identified. On the nanoscale, the spacing parameter of the surface dominates the interaction, whereas on the microscale the amplitude parameter adopts the governing role.


Subject(s)
Bacteria/drug effects , Bacterial Adhesion/drug effects , Biocompatible Materials/pharmacology , Models, Biological , Fourier Analysis , Surface Properties , Thermodynamics
16.
Dent Mater ; 29(3): 332-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23287407

ABSTRACT

OBJECTIVES: We fabricate multi-cellular aggregates of human gingival fibroblasts (hGFs) using a novel in vivo method that omits supportive flexible substrates. On the basis of the multi-cellular aggregates, constructive and destructive effects of mechanical stimulation are investigated. METHODS: hGFs were seeded onto aligned glass slides (one fixed, one mobile) with an initial gap <30 µm between their connecting edges. After the cells adhere, one of the glass slides is displaced using high precision threads and a piezoelectric element, widening the gap gradually. RESULTS: After several days of gradually widening the gap, multiple multi-cellular hGF aggregates formed, bridging the gap between the glass slides. The effects of discrete displacement events on previously established multi-cellular aggregates ranged from considerable growth and consolidation to collapse and disintegration. A quantitative criterion for assessing the probability for collapse/disintegration of hGF multi-cellular aggregates based on evaluating the meniscus curvature at the free edges before and after displacement is presented and discussed. The curvature is suggested as a representative parameter to characterize the mechanical condition of multi-cellular aggregates, as it is affected by adhesion of cells to the glass slides, cohesion inside the multi-cellular aggregate and the external mechanical load generated by the displacement of the glass slides. SIGNIFICANCE: The presented results clarify the potential and limitations of using mechanical stimulation for initiating and controlling regeneration of (gingival) tissue. Further potential applications include usage as biological substrate for co-culturing hierarchical tissue with multiple cell types (e.g. for vessels) and bio-membranes for filters (e.g. in microfluidics).


Subject(s)
Cell Aggregation , Fibroblasts/cytology , Gingiva/cytology , Guided Tissue Regeneration/methods , Biomechanical Phenomena , Cell Culture Techniques/methods , Cells, Cultured , Humans
17.
Integr Biol (Camb) ; 5(2): 414-22, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23254624

ABSTRACT

Artesunate (ART) is widely used for the treatment of malaria, but the mechanisms of its effects on parasitized red blood cells (RBCs) are not fully understood. We investigated ART's influence on the dynamic deformability of ring-stage Plasmodium falciparum infected red blood cells (iRBCs) in order to elucidate its role in cellular mechanobiology. The dynamic deformability of RBCs was measured by passing them through a microfluidic device with repeated bottleneck structures. The quasi-static deformability measurement was performed using micropipette aspiration. After ART treatment, microfluidic experiments showed 50% decrease in iRBC transit velocity whereas only small (~10%) velocity reduction was observed among uninfected RBCs (uRBCs). Micropipette aspiration also revealed ART-induced stiffening in RBC membranes. These results demonstrate, for the first time, that ART reduces the dynamic and quasi-static RBC deformability, which may subsequently influence blood circulation through the microvasculature and spleen cordal meshwork, thus adding a new aspect to artesunate's mechanism of action.


Subject(s)
Artemisinins/pharmacology , Erythrocytes/physiology , Erythrocytes/parasitology , Membrane Fluidity/physiology , Plasmodium falciparum/physiology , Antimalarials/pharmacology , Artesunate , Cells, Cultured , Elastic Modulus/drug effects , Elastic Modulus/physiology , Erythrocytes/drug effects , Hardness/drug effects , Humans , Membrane Fluidity/drug effects
18.
J Biomed Mater Res B Appl Biomater ; 100(6): 1490-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22689286

ABSTRACT

Ti oxides formed naturally on Nitinol surfaces are only a few nanometers thick. To increase their thickness, heat treatments are explored. The resulting surfaces exhibit poor resistance to pitting corrosion. As an alternative approach to accelerate surface oxidation and grow thicker oxides, the exposure of Nitinol to strong oxidizing H(2)O(2) aqueous solutions (3 and 30%) for various periods of time was used. Using X-Ray Photoelectron Spectroscopy (XPS) and Auger spectroscopy, it was found that the surface layers with variable Ti (6-15 at %) and Ni (5-13 at %) contents and the thickness up to 100 nm without Ni-enriched interfaces could be formed. The response of the surface oxides to stress in superelastic regime of deformations depended on oxide thickness. In the corrosion studies performed in both strained and strain-free states using potentiodynamic and potentiostatic polarizations, the surfaces treated in H(2)O(2) showed no pitting in corrosive solution that was assigned to higher chemical homogeneity of the surfaces free of secondary phases and inclusions that assist better biocompatibility of Nitinol medical devices.


Subject(s)
Alloys/chemistry , Hydrogen Peroxide/chemistry , Materials Testing , Titanium/chemistry , Corrosion , Photoelectron Spectroscopy
19.
J Biomed Mater Res A ; 100(7): 1743-50, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22467267

ABSTRACT

After annealing at 540°C, NiTi is covered by a characteristic oxide layer with an Ni-containing outer and an Ni-free inner titanium oxide region. To elucidate details of the yet unclear formation process, samples were annealed in an atmosphere containing different oxygen isotopes at a time and analyzed by nondestructive ion beam techniques at different stages of the oxidation. During the heating stage, an oxygen permeable "low Ni" titanium oxide forms, and the oxide layer grows inward. Subsequently, when the annealing temperature of 540°C is reached, Ni-free stoichiometric titanium oxide forms and inhibits the transport of oxygen toward the bulk. Thus, the oxide layer growth changes to outward, and the final location of the reaction front between O and Ti is inside the oxide layer at the transition of "low Ni" oxide to "Ni-free" oxide. Consequently, the annealing conditions during inward oxide layer growth govern the surface properties, whereas the conditions during outward oxide layer growth are uncritical with respect to the surface properties. The findings are directly applicable to set the amount of surface Ni of NiTi devices, provide basis for detailed interpretation of experimental results involving annealing of NiTi, and can further respective modeling.


Subject(s)
Nickel/chemistry , Oxides/chemistry , Titanium/chemistry , Hot Temperature , Oxygen Isotopes
20.
Cell Microbiol ; 14(7): 983-93, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22417683

ABSTRACT

Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over 2 weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor-ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modelling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together, we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long-term survival of the parasite.


Subject(s)
Erythrocytes/physiology , Erythrocytes/parasitology , Malaria, Falciparum/transmission , Plasmodium falciparum/cytology , Plasmodium falciparum/pathogenicity , Animals , Culicidae/parasitology , Female , Humans , Imaging, Three-Dimensional , Male , Parasitemia
SELECTION OF CITATIONS
SEARCH DETAIL
...