Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Endocrinol Metab ; 85(2): 707-14, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10690880

ABSTRACT

The majority of somatotropinomas are sporadic, although a small number occur with a familial aggregation, either as a component of an endocrine neoplasia complex that includes multiple endocrine neoplasia type 1 (MEN-1) and Carney complex (CNC) or as isolated familial somatotropinomas (IFS). IFS is defined as the occurrence of at least two cases of acromegaly or gigantism in a family that does not exhibit MEN-1 or CNC. This rare disease is associated with loss of heterozygosity (LOH) on chromosome 11q13, the locus of the MEN-1 gene, although the MEN-1 sequence and expression appear normal. These data suggest the presence of another tumor suppressor gene located at 11q13 that is important in the control of somatotrope proliferation. To establish linkage of IFS to 11q13 and to define the candidate interval of the IFS gene, we performed haplotype and allelotype analyses on two families with IFS. Collectively, allelic retention in one tumor and a recombinant haplotype in an affected individual mapped the tumor suppressor gene involved in the pathogenesis of IFS to a region of 8.6 cM between polymorphic microsatellite markers D11S1335 and INT-2 located at chromosome 11q13.1-13.3. Maximum two-point LOD scores for five markers within this region were 3.0 or more at theta = 0.0. As somatotropinomas are the predominant pituitary tumor subtype associated with CNC and arise before 30 yr of age, which is strikingly similar to the age at diagnosis for IFS, we explored the possibility that the putative CNC genes might also contribute to the pathogenesis of IFS. Although the genetic defect responsible for the complex is unknown, CNC has been mapped by linkage analysis to chromosomes 2p15-16 and 17q23-24 in different kindreds. Two-point LOD scores less than -2.0 were obtained using marker D17S949 from chromosome 17q23-24, excluding linkage. However, LOD scores of 2.5 were obtained for markers within 2p16-12; therefore, linkage of IFS to chromosome 2p cannot be excluded. This report establishes linkage of the tumor suppressor gene involved in the pathogenesis of IFS to chromosome 11q13.1-13.3 and identifies a potential second locus at chromosome 2p16-12.


Subject(s)
Acromegaly/genetics , Chromosome Mapping , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 2/genetics , Genetic Linkage , Gigantism/genetics , Adolescent , Adult , Chromosomes, Human, Pair 17/genetics , Female , Haplotypes , Humans , Lod Score , Male , Pedigree
2.
J Clin Endocrinol Metab ; 84(1): 249-56, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9920092

ABSTRACT

Familial acromegaly/gigantism occurring in the absence of multiple endocrine neoplasia type I (MEN-1) or the Carney complex has been reported in 18 families since the biochemical diagnosis of GH excess became available, and the genetic defect is unknown. In the present study we examined 2 unrelated families with isolated acromegaly/gigantism. In family A, 3 of 4 siblings were affected, with ages at diagnosis of 19, 21, and 23 yr. In family B, 5 of 13 siblings exhibited the phenotype and were diagnosed at 13, 15, 17, 17, and 24 yr of age. All 8 affected patients had elevated basal GH levels associated with high insulin-like growth factor I levels and/or nonsuppressible serum GH levels during an oral glucose tolerance test. GHRH levels were normal in affected members of family A. An invasive macroadenoma was found in 6 subjects, and a microadenoma was found in 1 subject from family B. The sequence of the GHRH receptor complementary DNA in 1 tumor from family A was normal. There was no history of consanguinity in either family, and the past medical history and laboratory results excluded MEN-1 and the Carney complex in all affected and unaffected screened subjects. Five of 8 subjects have undergone pituitary surgery to date, and paraffin-embedded pituitary blocks were available for analysis. Loss of heterozygosity on chromosome 11q13 was studied by comparing microsatellite polymorphisms of leukocyte and tumor DNA using PYGM (centromeric) and D11S527 (telomeric), markers closely linked to the MEN-1 tumor suppressor gene. All tumors exhibited a loss of heterozygosity at both markers. Sequencing of the MEN-1 gene revealed no germline mutations in either family, nor was a somatic mutation found in tumor DNA from one subject in family A. The integrity of the MEN-1 gene in this subject was further supported by demonstration of the presence of MEN-1 messenger ribonucleic acid, as assessed by RT-PCR. These data indicate that loss of heterozygosity in these affected family members appears independent of MEN-1 gene changes and suggest that a novel (tissue-specific?) tumor suppressor gene(s) linked to the PYGM marker and expressed in the pituitary is essential for regulation of somatotrope proliferation.


Subject(s)
Acromegaly/genetics , Chromosomes, Human, Pair 11 , Gigantism/genetics , Loss of Heterozygosity , Multiple Endocrine Neoplasia Type 1/genetics , Mutation , Neoplasm Proteins/genetics , Proto-Oncogene Proteins , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...