Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 13068, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506541

ABSTRACT

Leptin regulates both feeding and glycaemia primarily through its receptors expressed on agouti-related peptide (AgRP) and pro-opiomelanocortin-expressing (POMC) neurons; however, it is unknown whether activity of these neuronal populations mediates the regulation of these processes. To determine this, we injected Cre-dependent designer receptors exclusively activated by designer drugs (DREADD) viruses into the hypothalamus of normoglycaemic and diabetic AgRP-ires-cre and POMC-cre mice to chemogenetically activate or inhibit these neuronal populations. Despite robust changes in food intake, activation or inhibition of AgRP neurons did not affect glycaemia, while activation caused significant (P = 0.014) impairment in insulin sensitivity. Stimulation of AgRP neurons in diabetic mice reversed leptin's ability to inhibit feeding but did not counter leptin's ability to lower blood glucose levels. Notably, the inhibition of POMC neurons stimulated feeding while decreasing glucose levels in normoglycaemic mice. The findings suggest that leptin's effects on feeding by AgRP neurons are mediated by changes in neuronal firing, while the control of glucose balance by these cells is independent of chemogenetic activation or inhibition. The firing-dependent glucose lowering mechanism within POMC neurons is a potential target for the development of novel anti-diabetic medicines.


Subject(s)
Agouti-Related Protein/metabolism , Blood Glucose , Glucose/metabolism , Neurons/metabolism , Proprotein Convertases/metabolism , Animals , Diabetes Mellitus, Experimental , Eating , Glucose Intolerance , Insulin Resistance , Leptin/metabolism , Mice , Models, Biological
2.
J Phys Ther Sci ; 26(9): 1355-61, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25276015

ABSTRACT

[Purpose] The current study aimed to reveal the therapeutic effects of a pulsed electromagnetic field and swimming exercises on rats with experimental sciatic nerve injury, which was induced with crush-type neuropathy model damage, using electrophysiological methods. [Subjects] In the current study, the sample consisted of 28 adult male Wistar albino rats. [Methods] The rats were randomized into four groups (n=7). Swimming exercise and PEMF (2 Hz and 0.3 MT) were applied one hour a day, five days a week, for four weeks. Electroneuromyographic (ENMG) measurements were taken on day 7. [Results] When the data were evaluated, it was found that the 4 weeks of PEMF and swimming exercises led to an increase in motor conduction rates and a decrease in latency values, but the changes were not significant in comparison with the control and injury groups. The compound muscle action potential (CMAP) values of the left leg were lower in weeks 2, 3, and 4 in the swimming exercise group in comparison with the control group, although for the PEMF group, the CMAP values of the left leg reached the level observed in the control group beginning in week 3. [Conclusion] PEMF and swimming exercise made positive contributions to nerve regeneration after week 1, and regeneration was enhanced.

SELECTION OF CITATIONS
SEARCH DETAIL
...