Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 16(5): 1043-1050, 2017 10.
Article in English | MEDLINE | ID: mdl-28699239

ABSTRACT

Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single-cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell-to-cell variability resulted in a loss of correlation among the expression of several senescence-associated genes. Many genes encoding senescence-associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo.


Subject(s)
Cellular Senescence/genetics , Fibroblasts/metabolism , Genetic Variation , Single-Cell Analysis/methods , Transcriptome , Bleomycin/pharmacology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Cellular Senescence/drug effects , Cytokines/genetics , Cytokines/metabolism , Fetus , Fibroblasts/cytology , Fibroblasts/drug effects , Gene Expression Profiling , Gene Expression Regulation , Humans , Lung/cytology , Lung/drug effects , Lung/metabolism , Microfluidics/instrumentation , Microfluidics/methods , Nanotechnology/instrumentation , Nanotechnology/methods , Polymerase Chain Reaction/instrumentation , Polymerase Chain Reaction/methods , Protein Interaction Mapping , Signal Transduction , Single-Cell Analysis/instrumentation , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
2.
Bioconjug Chem ; 27(1): 217-25, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26689321

ABSTRACT

The diversity of nucleic acid sequences enables genomics studies in a highly multiplexed format. Since multiplex protein detection is still a challenge, it would be useful to use genomics tools for this purpose. This can be accomplished by conjugating specific oligonucleotides to antibodies. Upon binding of the oligonucleotide-conjugated antibodies to their targets, the protein levels can be converted to oligonucleotide levels. In this report we describe a simple method for preparing oligonucleotide-conjugated antibodies and discuss this method's application in oligonucleotide extension reaction (OER) for multiplex protein detection. Conjugation is based on strain-promoted alkyne-azide cycloaddition (the Cu-free click reaction), in which the antibody is activated with a dibenzocyclooctyne (DBCO) moiety and subsequently linked covalently with an azide-modified oligonucleotide. In the functional test, the reaction conditions and purification processes were optimized to achieve maximum yield and best performance. The OER assay employs a pair of antibody binders (two antibodies, each conjugated with its own oligonucleotide) developed for each protein target. The two oligonucleotides contain unique six-base complementary regions at their 3' prime ends to allow annealing and extension by DNA synthesis enzymes to form a DNA template. Following preamplification, the DNA template is detected by qPCR. Distinct oligonucleotide sequences are assigned to different antibody binders to enable multiplex protein detection. When tested using recombinant proteins, some antibody binders, such as those specific to CSTB, MET, EpCAM, and CASP3, had dynamic ranges of 5-6 logs. The antibody binders were also used in a multiplexed format in OER assays, and the binders successfully detected their protein targets in cell lysates, and in single cells in combination with the C1 system. This click reaction-based antibody conjugation procedure is cost-effective, needs minimal hands-on time, and is well-suited for the development of affordable multiplex protein assays, which provides the potential to accelerate proteomics research.


Subject(s)
Antibodies/chemistry , Oligonucleotides/chemistry , Proteins/analysis , Single-Cell Analysis/methods , Cell Line , Click Chemistry , Cycloaddition Reaction , Humans , Limit of Detection , Oligonucleotides/metabolism , Polymerase Chain Reaction/methods , Proteins/genetics , Recombinant Proteins/analysis , Recombinant Proteins/metabolism
3.
PLoS One ; 10(8): e0135007, 2015.
Article in English | MEDLINE | ID: mdl-26302375

ABSTRACT

Somatic mosaicism occurs throughout normal development and contributes to numerous disease etiologies, including tumorigenesis and neurological disorders. Intratumor genetic heterogeneity is inherent to many cancers, creating challenges for effective treatments. Unfortunately, analysis of bulk DNA masks subclonal phylogenetic architectures created by the acquisition and distribution of somatic mutations amongst cells. As a result, single-cell genetic analysis is becoming recognized as vital for accurately characterizing cancers. Despite this, methods for single-cell genetics are lacking. Here we present an automated microfluidic workflow enabling efficient cell capture, lysis, and whole genome amplification (WGA). We find that ~90% of the genome is accessible in single cells with improved uniformity relative to current single-cell WGA methods. Allelic dropout (ADO) rates were limited to 13.75% and variant false discovery rates (SNV FDR) were 4.11x10(-6), on average. Application to ER-/PR-/HER2+ breast cancer cells and matched normal controls identified novel mutations that arose in a subpopulation of cells and effectively resolved the segregation of known cancer-related mutations with single-cell resolution. Finally, we demonstrate effective cell classification using mutation profiles with 10X average exome coverage depth per cell. Our data demonstrate an efficient automated microfluidic platform for single-cell WGA that enables the resolution of somatic mutation patterns in single cells.


Subject(s)
Breast Neoplasms/genetics , Microfluidics/methods , Mosaicism , Single-Cell Analysis , Breast Neoplasms/pathology , Cell Line, Tumor , DNA Copy Number Variations/genetics , Exome , Female , Genetic Heterogeneity , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , Mutation
4.
Nat Biotechnol ; 32(10): 1053-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25086649

ABSTRACT

Large-scale surveys of single-cell gene expression have the potential to reveal rare cell populations and lineage relationships but require efficient methods for cell capture and mRNA sequencing. Although cellular barcoding strategies allow parallel sequencing of single cells at ultra-low depths, the limitations of shallow sequencing have not been investigated directly. By capturing 301 single cells from 11 populations using microfluidics and analyzing single-cell transcriptomes across downsampled sequencing depths, we demonstrate that shallow single-cell mRNA sequencing (~50,000 reads per cell) is sufficient for unbiased cell-type classification and biomarker identification. In the developing cortex, we identify diverse cell types, including multiple progenitor and neuronal subtypes, and we identify EGR1 and FOS as previously unreported candidate targets of Notch signaling in human but not mouse radial glia. Our strategy establishes an efficient method for unbiased analysis and comparison of cell populations from heterogeneous tissue by microfluidic single-cell capture and low-coverage sequencing of many cells.


Subject(s)
Cerebral Cortex/growth & development , Computational Biology/methods , Gene Expression Profiling/methods , RNA, Messenger/analysis , Sequence Analysis, RNA/methods , Signal Transduction/genetics , Animals , Cerebral Cortex/metabolism , Equipment Design , Humans , Mice , Microfluidic Analytical Techniques , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/physiology
5.
Lab Chip ; 12(22): 4809-15, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23000861

ABSTRACT

Advances in microfluidics now allow an unprecedented level of parallelization and integration of biochemical reactions. However, one challenge still faced by the field has been the complexity and cost of the control hardware: one external pressure signal has been required for each independently actuated set of valves on chip. Using a simple post-modification to the multilayer soft lithography fabrication process, we present a new implementation of digital fluidic logic fully analogous to electronic logic with significant performance advances over the previous implementations. We demonstrate a novel normally closed static gain valve capable of modulating pressure signals in a fashion analogous to an electronic transistor. We utilize these valves to build complex fluidic logic circuits capable of arbitrary control of flows by processing binary input signals (pressure (1) and atmosphere (0)). We demonstrate logic gates and devices including NOT, NAND and NOR gates, bi-stable flip-flops, gated flip-flops (latches), oscillators, self-driven peristaltic pumps, delay flip-flops, and a 12-bit shift register built using static gain valves. This fluidic logic shows cascade-ability, feedback, programmability, bi-stability, and autonomous control capability. This implementation of fluidic logic yields significantly smaller devices, higher clock rates, simple designs, easy fabrication, and integration into MSL microfluidics.


Subject(s)
Dimethylpolysiloxanes/chemistry , Logic , Microfluidic Analytical Techniques/instrumentation , Pressure , Printing/instrumentation , Equipment Design
6.
Biotechniques ; 34(3): 505-10, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12661156

ABSTRACT

We report the use of polyelectrolyte multilayers in a stable robust surface chemistry for specific anchoring of DNA to glass. The nonspecific binding of fluorescently tagged nucleotides is suppressed down to the single-molecule level, and DNA polymerase is active on the anchored DNA template. This surface-chemistry platform can be used for single-molecule studies of DNA and DNA polymerase and may be more broadly applicable for other situations in which it is important to have specific biomolecular surface chemistry with extremely low nonspecific binding.


Subject(s)
Coated Materials, Biocompatible/chemical synthesis , DNA-Directed DNA Polymerase/chemistry , DNA/chemistry , Electrolytes/chemistry , Microscopy, Fluorescence/methods , Biotinylation/methods , Coated Materials, Biocompatible/chemistry , Enzymes, Immobilized , Glass , Protein Binding , Substrate Specificity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...