Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(8): e0288555, 2023.
Article in English | MEDLINE | ID: mdl-37566568

ABSTRACT

The correct estimation of gait events is essential for the interpretation and calculation of 3D gait analysis (3DGA) data. Depending on the severity of the underlying pathology and the availability of force plates, gait events can be set either manually by trained clinicians or detected by automated event detection algorithms. The downside of manually estimated events is the tedious and time-intensive work which leads to subjective assessments. For automated event detection algorithms, the drawback is, that there is no standardized method available. Algorithms show varying robustness and accuracy on different pathologies and are often dependent on setup or pathology-specific thresholds. In this paper, we aim at closing this gap by introducing a novel deep learning-based gait event detection algorithm called IntellEvent, which shows to be accurate and robust across multiple pathologies. For this study, we utilized a retrospective clinical 3DGA dataset of 1211 patients with four different pathologies (malrotation deformities of the lower limbs, club foot, infantile cerebral palsy (ICP), and ICP with only drop foot characteristics) and 61 healthy controls. We propose a recurrent neural network architecture based on long-short term memory (LSTM) and trained it with 3D position and velocity information to predict initial contact (IC) and foot off (FO) events. We compared IntellEvent to a state-of-the-art heuristic approach and a machine learning method called DeepEvent. IntellEvent outperforms both methods and detects IC events on average within 5.4 ms and FO events within 11.3 ms with a detection rate of ≥ 99% and ≥ 95%, respectively. Our investigation on generalizability across laboratories suggests that models trained on data from a different laboratory need to be applied with care due to setup variations or differences in capturing frequencies.


Subject(s)
Cerebral Palsy , Deep Learning , Humans , Retrospective Studies , Biomechanical Phenomena , Gait , Algorithms
2.
PLoS One ; 14(8): e0220899, 2019.
Article in English | MEDLINE | ID: mdl-31465469

ABSTRACT

OBJECTIVE: To describe users' and therapists' opinions on multi-function myoelectric upper limb prostheses with conventional control and pattern recognition control. DESIGN: Qualitative interview study. SETTINGS: Two rehabilitation institutions in the Netherlands and one in Austria. SUBJECTS: The study cohort consisted of 15 prosthesis users (13 males, mean age: 43.7 years, average experience with multi-function prosthesis: 3.15 years) and seven therapists (one male, mean age: 44.1 years, average experience with multi-function prostheses: 6.6 years). Four of these users and one therapist had experience with pattern recognition control. METHOD: This study consisted of semi-structured interviews. The participants were interviewed at their rehabilitation centres or at home by telephone. The thematic framework approach was used for analysis. RESULTS: The themes emerging from prosthesis users and therapists were largely congruent and resulted in one thematic framework with three main themes: control, prosthesis, and activities. The participants mostly addressed (dis-) satisfaction with the control type and the prosthesis itself and described the way they used their prostheses in daily tasks. CONCLUSION: Prosthesis users and therapists described multi-function upper limb prostheses as more functional devices than conventional one-degree-of-freedom prostheses. Nonetheless, the prostheses were seldom used to actively grasp and manipulate objects. Moreover, the participants clearly expressed their dissatisfaction with the mechanical robustness of the devices and with the process of switching prosthesis function under conventional control. Pattern recognition was appreciated as an intuitive control that facilitated fast switching between prosthesis functions, but was reported to be too unreliable for daily use and require extensive training.


Subject(s)
Artificial Limbs , Adult , Amputees/rehabilitation , Female , Humans , Male , Middle Aged , Pattern Recognition, Automated , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...