Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Phys Rev X ; 82018.
Article in English | MEDLINE | ID: mdl-30984473

ABSTRACT

We use scanning optical magnetometry to study the broadband frequency spectra of spontaneous magnetization fluctuations, or "magnetization noise", in an archetypal ferromagnetic film that can be smoothly tuned through a spin reorientation transition (SRT). The SRT is achieved by laterally varying the magnetic anisotropy across an ultrathin Pt/Co/Pt trilayer, from the perpendicular to in-plane direction, via graded Ar+ irradiation. In regions exhibiting perpendicular anisotropy, the power spectrum of the magnetization noise, S(ν), exhibits a remarkably robust ν -3/2 power law over frequencies ν from 1 kHz to 1 MHz. As the SRT region is traversed, however, S(ν) spectra develop a steadily-increasing critical frequency, ν 0, below which the noise power is spectrally flat, indicating an evolving low-frequency cutoff for magnetization fluctuations. The magnetization noise depends strongly on applied in- and out-of-plane magnetic fields, revealing local anisotropies and also a field-induced emergence of fluctuations in otherwise stable ferromagnetic films. Finally, we demonstrate that higher-order correlators can be computed from the noise. These results highlight broadband spectroscopy of thermodynamic fluctuations as a powerful tool to characterize the interplay between thermal and magnetic energy scales, and as a means of characterizing phase transitions in ferromagnets.

2.
Article in English | MEDLINE | ID: mdl-28966478

ABSTRACT

A comprehensive investigation of magnetostriction optimization in Metglas 2605SA1 ribbons is performed to enhance magnetoelectric performance. We explore a range of annealing conditions to relieve remnant stress and align the magnetic domains in the Metglas, while minimizing unwanted crystallization. The magnetostriction coefficient, magnetoelectric coefficient, and magnetic domain alignment are correlated to optimize magnetoelectric performance. We report on direct magnetostriction observed by in-plane Doppler vibrometer and domain imagining using scanning electron microscopy with polarization analysis for a range of annealing conditions. We find that annealing in an oxygen-free environment at 400 °C for 30 min yields an optimal magnetoelectric coefficient, magnetostriction and magnetostriction coefficient. The optimized ribbons had a magnetostriction of 50.6 ± 0.2 µm m-1 and magnetoelectric coefficient of 79.3 ± 1.5 µm m-1 mT-1. The optimized Metglas 2605SA1 ribbons and PZT-5A (d31 mode) sensor achieves a magnetic noise floor of approximately 600 pT Hz-1/2 at 100 Hz and a magnetoelectric coefficient of 6.1 ± 0.03 MV m-1 T-1.

3.
Phys Rev Lett ; 119(7): 077205, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28949689

ABSTRACT

Magneto-optical Kerr effect (MOKE) microscopy measurements of magnetic bubble domains demonstrate that Ar^{+} irradiation around 100 eV can tune the Dzyaloshinskii-Moriya interaction (DMI) in Pt/Co/Pt trilayers. Varying the irradiation energy and dose changes the DMI sign and magnitude separately from the magnetic anisotropy, allowing tuning of the DMI while holding the coercive field constant. This simultaneous control emphasizes the different physical origins of these effects. To accurately measure the DMI, we propose and apply a physical model for a poorly understood peak in domain wall velocity at zero in-plane field. The ability to tune the DMI with the spatial resolution of the Ar^{+} irradiation enables new fundamental investigations and technological applications of chiral nanomagnetics.

4.
Phys Rev B ; 93(13)2016 Apr.
Article in English | MEDLINE | ID: mdl-28691109

ABSTRACT

We have used scanning electron microscopy with polarization analysis and photoemission electron microscopy to image the two-dimensional magnetization of permalloy films patterned into Penrose P2 tilings (P2T). The interplay of exchange interactions in asymmetrically coordinated vertices and short-range dipole interactions among connected film segments stabilize magnetically ordered, spatially distinct sublattices that coexist with frustrated sublattices at room temperature. Numerical simulations that include long-range dipole interactions between sublattices agree with images of as-grown P2T samples and predict a magnetically ordered ground state for a two-dimensional quasicrystal lattice of classical Ising spins.

5.
Nat Commun ; 6: 6082, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25631924

ABSTRACT

Exchange coupled CoFe/BiFeO3 thin-film heterostructures show great promise for power-efficient electric field-induced 180° magnetization switching. However, the coupling mechanism and precise qualification of the exchange coupling in CoFe/BiFeO3 heterostructures have been elusive. Here we show direct evidence for electric field control of the magnetic state in exchange coupled CoFe/BiFeO3 through electric field-dependent ferromagnetic resonance spectroscopy and nanoscale spatially resolved magnetic imaging. Scanning electron microscopy with polarization analysis images reveal the coupling of the magnetization in the CoFe layer to the canted moment in the BiFeO3 layer. Electric field-dependent ferromagnetic resonance measurements quantify the exchange coupling strength and reveal that the CoFe magnetization is directly and reversibly modulated by the applied electric field through a ~180° switching of the canted moment in BiFeO3. This constitutes an important step towards robust repeatable and non-volatile voltage-induced 180° magnetization switching in thin-film multiferroic heterostructures and tunable RF/microwave devices.

6.
Phys Rev Lett ; 108(12): 127002, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22540617

ABSTRACT

We have observed long-range spin-triplet supercurrents in Josephson junctions containing ferromagnetic (F) materials, which are generated by noncollinear magnetizations between a central Co/Ru/Co synthetic antiferromagnet and two outer thin F layers. Here we show that the spin-triplet supercurrent is enhanced up to 20 times after our samples are subject to a large in-plane field. This occurs because the synthetic antiferromagnet undergoes a "spin-flop" transition, whereby the two Co layer magnetizations end up nearly perpendicular to the magnetizations of the two thin F layers. We report direct experimental evidence for the spin-flop transition from scanning electron microscopy with polarization analysis and from spin-polarized neutron reflectometry. These results represent a first step toward experimental control of spin-triplet supercurrents.

7.
Ultramicroscopy ; 110(3): 177-81, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19962242

ABSTRACT

The magnetic vortex structure is an equilibrium configuration frequently found in patterned magnetic nanostructures. It is characterized by an in-plane curling of the magnetization with clockwise or anticlockwise chirality and by an out-of-plane vortex core that can have a positive or negative polarity. The small size of the vortex core, on the order of 10nm, makes it technologically interesting due to potential data storage, but also difficult to measure or image directly. In this work, we used Scanning Electron Microscopy with Polarization Analysis (SEMPA) to directly image magnetic vortex cores in patterned NiFe/Ta bilayer structures. With SEMPA we can simultaneously measure the in-plane and the out-of-plane component of the surface magnetization and thereby determine both the vortex chirality and the vortex core polarity in a single measurement. Our magnetic simulation of the vortex core, considering only the exchange and magnetostatic energy, is in good agreement with the SEMPA measurement of the magnetization when other experimental factors are taken into account.

8.
Phys Rev B Condens Matter ; 49(20): 14564-14572, 1994 May 15.
Article in English | MEDLINE | ID: mdl-10010541
9.
Phys Rev Lett ; 69(7): 1125-1128, 1992 Aug 17.
Article in English | MEDLINE | ID: mdl-10047129
11.
Phys Rev B Condens Matter ; 43(4): 3395-3422, 1991 Feb 01.
Article in English | MEDLINE | ID: mdl-9997652
12.
Phys Rev Lett ; 63(6): 668-671, 1989 Aug 07.
Article in English | MEDLINE | ID: mdl-10041141
SELECTION OF CITATIONS
SEARCH DETAIL
...