Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 18(4): 1595-601, 1998 Feb 15.
Article in English | MEDLINE | ID: mdl-9454864

ABSTRACT

Recent evidence indicates that systemic glucose treatment enhances memory while producing a corresponding increase in hippocampal acetylcholine (ACh) output. The present experiments examined whether unilateral intrahippocampal infusions of glucose would enhance spontaneous alternation performance and whether there would be a corresponding increase in ACh output in the ipsilateral and contralateral hippocampus. Extracellular ACh was assessed in samples collected at 12 min intervals using in vivo microdialysis with HPLC with electrochemical detection. Twelve minutes after a unilateral infusion of artificial cerebrospinal fluid (CSF) or glucose (6.6 mM), rats were tested in a cross maze for spontaneous alternation behavior with concurrent microdialysis collection. In two experiments, glucose infusions significantly increased alternation scores (67.5 and 59%) compared with CSF controls (42.4 and 39.5%, respectively). In both experiments, behavioral testing resulted in increased ACh output in the hippocampus. Glucose administration at the time of alternation tests enhanced ACh output beyond that of behavioral testing alone both ipsilateral (+93.8%) and contralateral (+85%) to the infusion site, as compared with ACh output (+36.1% and +55.5%) of CSF controls. Glucose infusions did not affect hippocampal ACh output in rats kept in a holding chamber. These results suggest that glucose may enhance alternation scores by modulating ACh release. The findings also indicate that unilateral glucose infusions increase hippocampal ACh output both ipsilateral and contralateral to the site of injection. Furthermore, glucose increased ACh output only during maze testing, suggesting that specific behavioral demands, perhaps requiring activation of cholinergic neurons, determine the efficacy of glucose in modulating ACh release.


Subject(s)
Acetylcholine/metabolism , Glucose/pharmacology , Hippocampus/metabolism , Animals , Behavior, Animal/physiology , Functional Laterality/physiology , Hippocampus/drug effects , Injections , Male , Microdialysis , Rats , Rats, Sprague-Dawley
2.
Proc Natl Acad Sci U S A ; 93(10): 4693-8, 1996 May 14.
Article in English | MEDLINE | ID: mdl-8643466

ABSTRACT

Several lines of evidence indicate that a modest increase in circulating glucose levels enhances memory. One mechanism underlying glucose effects on memory may be an increase in acetylcholine (ACh) release. The present experiment determined whether enhancement of spontaneous alternation performance by systemic glucose treatment is related to an increase in hippocampal ACh output. Samples of extracellular ACh were assessed at 12-min intervals using in vivo microdialysis with HPLC-EC. Twenty-four minutes after an intraperitoneal injection of saline or glucose (100, 250, or 1000 mg/kg), rats were tested in a four-arm cross maze for spontaneous alternation behavior combined with microdialysis collection. Glucose at 250 mg/kg, but not 100 or 1000 mg/kg, produced an increase in spontaneous alternation scores (69.5%) and ACh output (121.5% versus baseline) compared to alternation scores (44.7%) and ACh output (58.9% versus baseline) of saline controls. The glucose-induced increase in alternation scores and ACh output was not secondary to changes in locomotor activity. Saline and glucose (100-1000 mg/kg) treatment had no effect on hippocampal ACh output when rats remained in the holding chamber. These findings suggest that glucose may enhance memory by directly or indirectly increasing the release of ACh. The results also indicate that hippocampal ACh release is increased in rats performing a spatial task. Moreover, because glucose enhanced ACh output only during behavioral testing, circulating glucose may modulate ACh release only under conditions in which cholinergic cells are activated.


Subject(s)
Acetylcholine/metabolism , Glucose/pharmacology , Hippocampus/drug effects , Hippocampus/physiology , Memory/drug effects , Memory/physiology , Animals , Blood Glucose/metabolism , Glucose/administration & dosage , Glucose/physiology , Hippocampus/metabolism , Injections, Intraperitoneal , Male , Maze Learning/drug effects , Maze Learning/physiology , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...